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The book  is dedicated to  the presentation 
of methods  of calculation of electrical  capaci- 
tance,   and it contains a  summary of calculation 
formulas,   tables,  and graphs necessary  for the 
determination of the capacitance of conductors 
of various  form.  ».,. 

The book is  intended for engineers and 
scientists  engaged in electromagnetic calcula- 
tions;   it can be useful alsß  to students and 
to graduate students of electrical  specialities, 
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PREFACE 

The necessity for the calculation of capacitance (or parameters 

analogous to it - electrical magnetic, and thermal conductivity) 

appears with the designing of various electroautomatic and radio 

engineering devices, the calculation of telephonic, telegraphic, and 

television cables, of transmission lines and communication lines, 

separate elements of television, telemetering and electrometric 

apparatus, calculation of grounding electrodes, of various magnetic 

systems, and with the solution of a whole series of other problems 

which must be encountered by engineers and scientific workers of 

various specialties. 

Because of this the problems of calculation of capacitance 

and parameters analogous to it have for several decades been con- 

sidered in physical, radio engineering, and electrical literature, 

and the bibliography of works dedicated to this problem published at 

the present ti :e is vast. 

Unfortunately, the vast majority of these works are devoted to 

giving an account of only individual special problems of calculation 

of electrical capacitance. As for the very few works in which 

attempts were made to give a systematic account of the problems of 

calculation of capacitance, they are either too antiquated,1 or 

'Orlich E., Kapazität und Induktivität; 1909. 
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they concern (similar to the book of R. Brüderlink1) only conductors 

of a certain type. 

In connection with this there has long been a need for publica- 

tion of a reference book on the calculation of capacity reflecting the 

contemporary state of this problem and containing both the fundamental 

methods of calculation of capacity and ready formulas, tables, and 

curves which refer to the most important particular cases. This 

book, proposed for the readers' attention, is dedicated to the solu- 

tion of this problem. 

In developing the plan of the book, the authors in many respects 

likened it to the plan of the known reference book of P. L. 

Kalantarov and L. A. Tseytlin on calculation of inductance, published 

by the State Scientific and Technical Power-Engineering Publishing 

House in 1955. The authors feel that this will not only be con- 

venient for the readers of this or other books, but also will create 

prerequisites for a uniform account in many respects of connected 

problems of calculation of capacitance and inductance in the future. 

Following such a plan, the authors broke up the fundamental 

material of the book into two parts, in the first of which an account 

is given of the methods of the calculation of capacitance, and in 

the second of which are given formulas, tables, graphs necessary for 

calculation of capacitance in various cases. 

One of the things concerning problems on calculation of electrical 

capacitance is that r.trict methods of their solution are essentially 

inseparable from methods of calculation of the electrostatic field of 

the system of charged bodies being considered. Along with this during 

the calculation of capacitance approximation methods are used, not 

requiring knowledge of the electrostatic field in the space surround- 

ing the conductors, also auxiliary methods which allow converting 

the system of conductors considered to a form more convenient for 

calculation. 

1 Brüderlink R., Induktivität und Kapäzrität der 
Starkstromfreileitungen; 195*<. 
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Taking into account that the methods of calculation of electro- 

static fields in the majority are well illuminated in electrical 

engineering and physicomathematical literature,1 in the first part 

of the book only the less known approximation and auxiliary methods 

used in calculating capacitance are stated. 

The account of each of the methods of calculation of capacitance 

I      is accompanied by illustrations which should help the reader master 

not only the idea of the method, but also the characteristics of its 

application to the solution of concrete practical problems. 

In the second, reference, part of the book, the authors strove 

as fully as possible to present the data necessary for calculation 

of capacitance of conductors of the most typical form, without facing 

the problem of summarizing all results published up to the present 

time (within the confines of one book this would be, apparently, 

generally impossible). The application of reference data is 

illustrated by illustrations of a calculation reduced to numerical 

results. 

In conclusion the authors express sincere gratitude to the 

reviewer, Doctor of Technical Sciences L. A. Tseytlin and the 

scientific editor, Candidate of Technical Sciences R. A. Pavlovskiy, 

the participation of whom in the consideration and preparation of the 

present book went far beyond the scope of their formal responsibilities. 

The authors hope that this book will be useful to a wide circle 

of engineers and scientific workers engaged in electromagnetic 

calculations. 

Comment» and remarks on the content of the book should be sent to: 

Leningrad, USSR, Leningrad, D-*ll, Marsovo pole, d. 1, Leningradskoye 

otdeleniye izdatel'stva "Energiya." 

  Author 8 
lSee,  for example, V. Smayt, Elektrostatika i elektrodinamika 

(Electrostatics and Electrodynamics), IL, 1951», N. N. Mirolyubov et al., 
Metody rascheta elektrostaticheskikh poley (Methods of Calculation of 
Electrostatic Fields), Vysshaya shkola, 1963. 
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INTRODUCTION 

V-l. Fasle Definitions 

Between charges and potentials In any system of conductors 

that create an electrostatic field, a one-to-one linear relation 

exists, for the expression of which the concept of electrical 

capacitance or simply capacitance is introduced.1 

Depending on the type of system of conductors considered, the 

capacitance of a solitary conductor, the capacitance between two 

conductors and the capacitance in a system of many conductors are 

distinguished. 

The capacitance of a solitary conductor  is a scalar quantity 
characterizing the ability of the conductor to accumulate an 

electrical charge and is equal to the ratio of the charge of the 

conductor to its potential on the assumption that all other loaded 

conductors are an infinite distance away. 

If the charge of a solitary conductor is designated Q,  and its 

potential vt  then in accordance with the given definition, the 

'Here and subsequently, if nothing is said to the contrary, it is 
assumed that the specific inductive capacitance of the medium surround- 
ing the conductors does not depend on electrostatic field strength, 
all the conductors being considered are in a finite region of space, 
and that the potential at an infinitely distant poi^.t is equal to 
;:ero. 
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capacitance of this conductor will be expressed by the formula 

C.--2-. (V-l) 

The oapaaitanoe between two conductors  is a scalar quantity 
equal to the absolute value of the ratio of the electrical charge 

of one of the conductors to the difference in their potentials on 

condition that these conductors have charges identical in amount, 

but opposite in sign and that all other loaded conductors are 

infinitely far away. 

If the charges of the conductors are equal to tQt  and their 

potentials have quantity P. and V~t  then in accordance with the 

given definition, the capacitance between these conductors can be 

expressed by the formula 

V^v,\' (V-2) 

An arrangement of two conductors separated by a dielectric 

(plates) intended for utilization of capacitance between them is 

called a capacitor; therefore, the capacitance between two conductors 

is sometimes called also aapaoitor oapaaitanoe. 

The generalization of introduced concepts in the case of a 

system with a random finite number of conductors is a concept about 

intrinsic and mutual partial capacitances. 

The conductor's intrineio partial oapaaitanoe  that enters the 
system of many bodies is a scalar quantity equal to the ratio of 

the charge of this conductor to its potential on the assumption that 

all the conductors of the system (including the one being considered) 

have identical potential. 

Mvtual partial oapaaitanoe between two conductors that enter 

the system of many bodies is a scalar quantity equal to the ratio 

of the charge of one of the conductors being considered to the 
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potential of another on the assumption that all conductors, except 

the latter, have potential equal to zero. 

In accordance with the introduced definitions the relation 

between charges and potentials in a system of n conductors is expressed 

by the following equations: 

<?i = C,,V1 + C11(V1-V1)+ ... +Cu(Vl-Vji 
Qt = Cu(Vt-Vl) + CnVt+ ... + Cu(Vt-VJ, (y_3) 

Q,=c,l(K<l-v1)+c/rt(^~vl)+ ...+cmyr 

where Q.  and V.  are the charge and potential of the i-th conductor 

(i  -  1, 2, ..., n); c.j  is the intrinsic partial capacitance of the 

i-th conductor (i ■ 1, 2, ..., n); C..   is the mutual partial capaci- 

tance between the i-th and fe-th conductors (i, fe a 1, 2, ..., n; 

i  ^ fe), in this case it is possible to show that c. ■ C. .. 

The distribution of concepts of intrinsic and mutual partial 

capacitances is to a considerable extent arbitrary in nature. 

Really any system of n conductors which occupies a finite volume can 

be conditionally considered a system of n  + 1 conductors, where 

(n + l)-th conductor is a sphere of infinite radium having zero 

potential. In a new system the intrinsic partial capacitance of any 

conductor [except the (n + l)-th] can be interpreted as the mutual* 

partial capacitance between this conductor and the sphere. 

In the particular case when the algebraic sum of the charges of 

all conductors of a system is equal to zero (such a system is called 

electroneutral), the system of equations (V-3) can be converted to 

the form: 

<?l-c;,(K1-Kt)+... + c;<l(K1-v1,v 

o, - c;,(vl(-"'1)+... +C;.»-I("
/
,--'

,
.-I)« 
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where C\.   is the mutual partial capacitance between the i-th and 

fc.-th electrodes in an electroneutral system (CU  » cLj)- 

The quantities CW  can be defined in the same way as C.. , on 

the assumption that all conductors, except one, have about the same 

(but not necessarily equal to zero) potential. In general the 

quantities CW  are not equal to the quantities C. , but can be 

expressed through them. 

Equations (V-3) or (V-4) can be converted, grouping on their 

right sides terms having a factor value V. .    In this case the system 

of equations connecting charges and potentials of conductors takes 

the form: 

Q« - Mr + ?>•+...+ RwK«. 

The quantities entering these equations ß.. are called ooeffi- 

oiente of electrostatic induction  (intrinsic when i  ■ fe and mutual 

when i ft  fe), and, as can be shown, 

fc*>o, jto-?»f<a. 

Another form of recording of relationships (V-5) is: 

Vt - «uQi + «iiQt+ ... +«»«* 
Vt - «tiQi + ««<?« + •.. + HA* 

K« - ««Ci + ««Qi+ ... + «MC» 

The quantities a.^ entering (V-6) are called potential coeffi- 

cients   (intrinsic when i  * fe and mutual when t ^ fe), ctfefe > 0, 
atfe » °» atfe " afet < °fefe' 

The systems of equations (V-3)-(V-6) are various forms of the 

expression of one and the same interrelationship between charges and 
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potentials of conductors in a system of many bodies. Therefore, the 

coefficients which enter the equations are also interconnected. 

Thus 

Ckk - fc» + ?*+... 9*» + • • • f fcrt» 

When a system consists of one conductor (n ■ 1), the concept of 
intrinsic partial capacitance coincides with the concept of the 

capacitance of a solitary conductor: CQ  ■ C,.. 

When a system consists of two conductors (n - 2) and is electro- 

neutral, the concept of mutual partial capacitance coincides with the 

concept of the capacitance between two conductors: C ■ tf-fo* In tn:S-s 

case the following relationships are also valid: 

Q m £H£B + ^MC« + Si£n 
cn+cu 

Pu + Pn+aJii* 
c—L-57-. 

As follows from the definitions given above, the values of the 

capacitance of solitary conductors, of the capacitance between two 

conductors and of the capacitances in a system of many conductors 

are substantially positive and are defined only by the geometric 

parameters of conductors and by the specific inductive capacitance 

of the environment. Prom these determinations it is evident also 

that the quantities CQ, cs  C..t  C..s   ß.^, ß^. and C\^  are quantities 

of the same dimension and can be united under the name of capacitive 

coefficients (unlike potential coefficients having reverse dimension) 

V-2. General Features of Capacitance 
and Classification of Conductors 

A.  formulated below are some general positions expressing the 

dependence of the capacitance of conductors upon their geometric 
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I I 

parameters and the specific inductive capacitance of the 
environment. 

1. At c oonetant value of specific inductive capacitance  the 
relationships of the capacitances in two geometrically similar systems 

of conductors are equal to the relationship of the characteristic 

sizes of these systems: 

I     IT 
where a and a '   are the characteristic sizes of systems I and II. 

When the form of conductors is such th.-\t the electrostatic 

fields being induced by them can be considered plane-parallel,1 the 

capacitances (per unit of length of conductors) in geometrically 

similar electroneutral systems of two or more bodies2 equal between 

themselves: 

c!«c!'; c!».,-cä., . (V-8) 

where C,"«-—, C5.,»_JL# m=»i, nt f   iS the length of the conductors 
i •      im 

(in the direction of their axis). 

2. At identical geometric parameters of two systems  of con- 
ductors in uniform media with various specific inductive capacitances, 
the relationships of similar quantities characterizing capacitance in 
these systems are equal to the ratio of specific inductive capacitances: 

cj»  .»•' c»-."' t\l    .« ' (v"9 

'Such systems of conductors will subsequently be called plane- 
parallel. 

2The concept of the capacitance of a solitary conductor in this 
instance makes no sense physically. 
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T     II 
where e" and e  are the specific inductive capacitances of the 

media in systems I and II.1 

This feature is valid also for the case of heterogeneous media 

on condition that the spatial distributions of specific inductive 

capacitance in systems I and II are similar. Together with those 

given can be shown a number of features of capacitance which are 

valid only for individual types of systems united by any general 

criteria. One of such criteria is the presence of a boundary of 

division of two uniform media with various specific inductive 

capacitances. 

Let the conductors being considered be located in a medium with 

specific inductive capacitance e, near the boundary of division of 

media with specific inductive capacitances e, and e~. If e, << e2» 

then the boundary of division of nedia can be considered equipotential, 

i.e., it can be considered a surfte of an ideal conductor. If 

e, >> Ep, then the boundary of division can be considered impenetrable 

for power lines of an electrostatic field and therefore it can be 

considered the surface of a certain conditional medium with zero 

specific inductive capacitance. Such a boundary will be subsequently 

called impenetrable. 

For the capacitance of conductors near an infinitely extended 

flat ideally conducting or impenetrable surface, the following basic 

relationships are valid. 

1. The capacitance between any solitary conductor and an 

infinite ideally conducting surface (Pig. V-la) is equal to the 

doubled value of the capacitance between this conductor and its 

mirror reflection relative to the plane (Pig. V-lb). 

2. The capacitance of any solitary conductor 1 near an infinitely 

extended flat impenetrable boundary (Pig. V-2&\  is equal to the half 

of the capacitance of the solitary conductor formed by the union of 

# i 

analogous equations are valid even for all remaining capacitive 
coefficients while for potential coefficients the opposite relation- 
ships are fulfilled. 
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Pig. V-l. Pig. V-2. 

conductor 1 with its mirror reflection 2 relative to the plane 

(Fig. V-2b). 

B. Subsequently we will subdivide conductors according to 

their geometric form into wires, flat plates,  open and closed shells. 
The latter in an electrostatic sense is equivalent to the solid 

conductors of the same form, with the exception of those cases when 

other charged conductors are inside the shells. In considering wires 

we will assume that their sections are constant in length and the 

linear dimensions of the section are considerably less than the 

length of wire and the distances to other conductors. In considering 

flat plates and shells we will consider that their thickness at every 

point of surface is constant and in all cases when nothing is said 

to the contrary is infinitesimal. 

With the assumptions made the following extremum properties of 

capacitance are valid. 

1. Of all solitary straight wires of assigned length and area 

of transverse section, the one with the least capacitance Is the 

wire of circular section. 
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2. Of all flat plates of assigned area the one with least 

capacitance is the circular disc. 

3. Of all triangular flat plates of assigned area, the one 

with least capacitance is a plate in the form of an equilateral 

triangle. 

4. Of all rectangular flat plates of assigned area, the one 

having least capacitance is the square plate. 

5. Of all bodies of an assigned volume the one having the 

least capacitance is the sphere. 

6. Of all right cylinders of assigned altitude and area of 

transverse section, the one having the least capacitance is the 

right circular cylinder. 

7. Of all systems in the form of two circular infinitely long 

cylinders with parallel axes, one of which envelopes the other, the 

one with least capacity per unit of length is the system in the form 

of coaxial cylinders. 

Very characteristic features are possessed also by the capaci- 

tance of the system shown in Pig. V-3. Let curve OAO'A*  represent 

the section of an infinitely long cylinder, symmetrical with respect 

to line 00'.    Considering the surface of a cylinder an impenetrable 

boundary of a medium with specific inductive capacitance e, filling 

the inside of the cylinder, we assume that OA ' and O'A  are sections 

of infinitely long conductors 1  and 2, and points A  and A'  are 

symmetric relative to plane 00 '. 
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In the conditions shown the capacitance between conductors 1  and 

2  fper unit of length) is numerically equal to e.1 

An analogous feature can be formulated also for a system which 

differs from the one shewn in Pig. V-3 only by the fact that it con- 

tains not two, but four divided infinitesimally thin gaps of conductor 

1,  2t 3  and 4t  the sections of which coincide with lines 0At A0't 

O'A' and A'O,  respectively (Pig. V-l|). For this system the mutual 

partial capacitance between any two crosswise lying conductors per 

unit of length (Cig - or C^ ^) is equal to e In 2, whatever the 

form and dimensions of the section of the cylinder.2 

'V    > 4 2 

^^^"^ • 

*^**-w • Jo' 
4             > 

7 ^3 

Fig. V-4, 

V-3. Units of Measurement of Capacitance 

The unit of measurement of capacitance in the system SI [Inter- 

national System] is the farad (F). Furthermore, fractional units 

are used: microfarad (yF) and picofarad (micromicrofarad) (pF): 

1 uF-IOT* F, 

1 pF-lO-" F. 

To find capacitance in farads it is necessary to multiply its 

value In another system of units by the appropriate conversion factor. 

*The feature shown was noted for the first time for a particular 
case in the work of Lees C. H., Proc. Manch. Lit. and Phil. Soc. 
1899, 1-3; in general form it was formulated by F. Bowman (Bowman, P. 
Proc. of the Lond. Math. Soc. 1935, ser 2, V. 39, p. 3, 205-213), ani 
then was again considered by A. V. Netushil f"Elektriohcstvo" 1951, 
No. 3). 

2See, for example, Lampard D. G., Proc. IEE, 1957, C. 10*», N 6, 
271-280. 
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The conversion factors of values of capacitance from other systems 

of units to the SI system have the following values: 

System of Conversion 
unit? factor 

SGSE 10
5
/ö
2 

SGSM 109 

SGS 105/o2 

MKSA 1 

[SGSE - Centimeter-gram-second electrostatic 
system; SGSM - Cgs electromagnetic system; 
SGS - Centimeter-gram-second; MKSA - meter- 
kilogram-second-ampere]. 

where a  is the number value of the velocity of the propagation of 
p 

electromagnetic waves in free space (in m/s), equal to 2.997925*10 . 

V-1!. Analogy Between Capacitance and Other 
Physical Quantities 

Because of the mathematical analogy of potential fields of 

different physical nature, for each of them it is possible to show 

the analog of electrical capacitance. Thus, for instance, for 

stationary electrical, magnetic, and thermal fields such analogs 

are electrical, magnetic, and thermal conductivities, respectively. 

At assigned geometric parameters of the system of bodies, the value- 

analogs of electrical capacitance are proportional to it, and the 

coefficients of proportionality are the relationships of the appro- 

priate physical parameters of a medium to specific inductive capaci- 

tance. Specifically, for two bodies 

G = -fC; (V-10) 

GU = ±C; (V-ll) 

Gr=^C, (V-12) 
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v.here G  is the electrical conductivity between the bodies being 
considered in a uniform medium with specific electrical conductivity 
Y; GM is magnetic conductivity between bodies in a uniform medium 
with permeability u; G    is the thermal conductivity between bodies in 
a uniform medium with thermal conductivity coefficient A; C  is the 
capacitance between bodies in a uniform medium with specific inductive 
capacitance e. 

The same relationships connect partial conductivities and 
partial capacitances in the system of many bodies. 

Apart from the one indicated there is also an approximate 
analogy between electrical capacitance and certain parameters of 
high-frequency electromagnetic systems.1 At assigned geometric 
layout of the system of conductors, at high frequency especially, 
the following approximate relationships are valid: 

r«2S; (V-13) c 

where W  is the wave resistance of a system of two conductors in a 
uniform medium with specific inductive capacitance e and permeability 
u, C  is the capacitance between these conductors; 

*/«-£. (V-1Ü) 
w 

where L^  is the inductance per unit of length of a two-wire line in 
a uniform medium with permeability u; C«  is the capacitance between 
these conductors (per unit of their length) in a uniform medium with 
specific inductive capacitance e. 

For rectilinear wires the following relationships can also 
be shown: 

i**tt«c'*'»**. (V-15) 

'in this case frequency is assumed to be so high that the lines 
of the magnetic field can be considered outside the sections of 
conductors. 
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where I, ,   is the inductance of a wire I.   long in a homogeneous medium 

with permeability u; a., is the intrinsic potential coefficient of a 

wire in a homogeneous medium with specific inductive capacitance e, 

calculated by the method of mean potentials (see § 1-2); 

M ,k at »|»J,/* COS <f>rta,*, ( V-16 ) 

where M..   is the mutual inductance of two wires I.  and I.   long at 

an angle <J>.. to each other in a homogeneous medium with permeability 

u; a., is the mutual potential coefficient of the same wires in a 

homogeneous medium with specific Inductive capacitance e, calculated 

by the method of mean potentials. 

The examined analogy makes the calculation of capacitance 

equivalent to the calculation of a number of other physical parameters, 

specifically: 

a) magnetic conductivity of various magnetic circuits; 

b) resistance of spreading out of electrodes connecting 

electrical circuits with conducting medium (for example, grounds); 

c) wave resistance of wave guides, strip lines, antennas, and 

other transmitting and radiating systems; 

d) thermal conductivity between various heated bodies. 

V-5. Means of Calculation of Capacitance 

Formulas (V-l)-(V-6) cannot be directly used for calculation of 

capacitance (or quantities connected with it) because usually only 

geometric parameters of the system of conductors and the specific 

inductive capacitance of the surrounding medium are known. Therefore, 

to determine capacitance it is necessary either to design charges 

of conductors, having been assigned by their potentials, or, on the 

contrary, to find the potentials of conductors, having been assigned 

by Iho quantity of charges. 
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■  I 
Both these problems can be strictly solved on the ba.Us of 

calculation of the electrostatic field of the system of conductors 

being considered. Really, knowing the distribution of electrostatic 

field potential (u)  in the space surrounding the conductors, it is 

possible to find the charges of each of them with the aid of the 

relationship: 

3i 
(V-17) 

where Q. is the charge of the ^-th conductor; S. is the surface of 

the t-th conductor; n is the external normal to the surface of the 

conductor. 

When the electrostatic field cannot be calculated, special 

methods of calculating capacitance are used which are based either on 

directly establishing the connection of the charge of the conductor 

with the potential of its surface (methods of direct determination 

of capacitance), or upon simplification of problems of calculation of 

electrostatic field (auxiliary methods). 

Formulation of problems of calculation of capacitance depends 

upon the selection of initial quantities (charges or potentials), 

which, in turn, is determined by the form of the system of conductors 

considered. 

In calculating the capacitance of a conductor, its potential 

or charge can be assigned at random. If it is supposed that potential 

is equal to one, then the charge of a solitary conductor will be 

numerically equal to its capacitance. In calculating the capacitance 

between conductors, as a rule, it is possible to define only their 

charges, and the condition Q2 -  -Gi must be observed. 

The potentials of both conductors in general cannot be selected 

at random since they are connected b.v the relationship 

A- — *«- (V-18) 
V,        C, it 
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following from (V-3) when n  * 2, Q1  = -Q2< 

The assignment of potentials as initial quantities is possible 

only in certain special cases, for example, the following. 

1. The system of two conductors is symmetrical relative to a 

certain plane.  In this case C,, = C*22» 
and at G-. a -flp ^l = ~^2 " *» 

where /l is a random quantity. 

2. The dimensions of one of the conductors (for example, the 

first) are incommensurably great in comparison with the dimensions 

of the other.  Here C,, >> C"22, C22
/Cll ~ °» 1,e*» v\ z  °» V2  " 4» 

where A  is a random quantity. 

With the calculation of partial capacitances in a system, 

initial quantities can be in general only their potentials. 

Thus, with calculation of Intrinsic partial capacitance, the 

potentials of all conductors of the system must be taken equal to one 

and the same random constant, and In calculating the mutual partial 

capacitance between the i-th and fe-th conductor, the potential of 

one of them can be selected at random, and the potentials of all the 

remaining conductors must be taken equal to zero. 

As already noted in the preface, methods o::' calculation of 

electrostatic fields are covered in sufficient detail in literature; 

therefore, in the last two chapters of this book, only special 

methodn of calculating capacitance are considered. 
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PART  ONE 

SPECIAL METHODS OP CALCULATING CAPACITANCE 
I 

I'T»-MT-?'I-;>69-70 



CHAPTER  1 

METHODS OP DIRECT DETERMINATION OP CAPACITANCE 

1-1. General Remarks 

Methods of direct determination of capacitance are applicable 

when conductors are in homogeneous media. These methods are based 

on replacement of each of the conductors considered with a dielectric 

body having the same form as the conductor, and the same specific 

inductive capacitance as the surrounding medium. Instead of an 

unknown true (equilibrium) distribution of charge over the surface 

of the conductor, a certain fictitious distribution of charge over 

the surface of the body o(S)  or in its volume p(y) is assigned. 

Methods of assignment of functions a(S)  or p(y) depend on the features 

of concrete methods of direct determination of capacitance; however, 

in any selected form of these functions, the value of the total charge 

of the body is found from the formula« 

Q,-r«(S)<tf (l-i) { 
or 

Qi«Jp(e)<fe. (1-2) 
•i 

and the potential at the random point (Pj of the surface of the body 

from the formulas 

«W-^V.frr^Vs (1-3) 4nt 7J\,(/>», 
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i i 

»-^JfrTSfc^ «I'*) ^C*»)-^ 

where P. is a point either on the surface of the t-th body (1-3)» 

or in its volume (l-1!); *(ph» P
J)  

1S
 

cfte distance between points 

PL and P.; n is the number of conductors in the system. 

For a plane-parallel system of conductors, instead of (1-3) 

and (1-A) one ought to use the formulas: 

* 

or V </»*) - -~ 

^Sf"1'"^"        (i"3,) 

--£-V;f'<s>ta-^r-^'5' (1-4») 

where L,  is the contour of the section of the t-th body; T(L) is the 

linear density of a charge on the contour of the section of the t-th 

body; a(5) is the surface density of the charge in a section of the 

i-th body; P^ is a point of the contour of the section of the fe-th 

body; P. is a point either on the contour of the section of the t-th 

body (1-3') or inside its section (1-41), **(PJL; 
pj)  is the distance 

between points P. and P., lyir^g in the section. 

In general the surface of the body considered is not equipoten- 

tial, whereas the surface of any conductor is equipotential. To get 

rid of this discrepancy of the whole surface of the body, a certain 

constant potential V,  is conditionally added, the value of which is 

determined by this or that method according to the distribution of 

the potential found from (1-3) or (l-1*). 

Disposing Q^  and V.  for each of the conductors of the system 

(i ■ 1, 2, ,.,, n), the capacitances of this system can be found 

approximately using formulas (V-l)-(V-4). 
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1-2. The Method of Mean Potentials 

The method of mean potentials is based on assignment of a 

fictional distribution of charge over the surface of or in the volume 

cf bodies replacing conductors. In this case the surface of each of 

the bodies is ascribed a constant potential equal to the arithmetic 

mean of values of potential in all points of the surface of the body 

{V  = V    ).    This quantity (V    )  is called the mean potential of the 

surface or tne mean potential of the conductor. 

When the method is used to determine V, the law of fictional 

distribution of charge has comparatively little effect on accuracy 

of determination of capacitance (inasmuch as capacitance is an 

integral characteristic of electrostatic field) and is usually 

selected only from conditions of simplicity of calculations. The 

most widespread assumption is that the charge is uniformly distributed 

over the surface of the body. A method of calculation of capacitance 

based on this was proposed by G. Howe [1-1] and bears his name. 

Other methods besides this were proposed for assigning the law 

of surface distribution of charge, using the method of mean potentials, 

Thus, in [1-2] it is proposed to select this law in the form 

•*-'[$ *J (1-5) 

where 5 is the surface of the conductor; A  is a random quantity; 

r  is the distance between two points of the surface 5, one of which 

is a running point and the other of which is a fixed point. 

Formula (1-5) in a number of cases gives a better approximation 

than in the Howe method to equilibrium distribution of charge; 

however, the calculation formulas obtained are usually more complex. 

Below we shall limit ourselves mainly to consideration of the 

llowo mothod, which is the most widespread method of direct determina- 

tion of capacitance. 



-U_J.Ul_JU"  '.-.!.l,i"J. .l.-L J 1-.  

i 
i 

For a solitary conductor mean potential can be determined 

according to the formula 

•v ■^"»«-i^-T-. (1-6) 

where S  is the surface of the conductor considered (and also the 

area of this surface); V(p)  is the potential at point p of surface St 

determined by formula (1-3); Q  is the total charge of the conductor; 

r  is the distance between the points of the surface of the conductor, 

Calculation of mean potential by formula (1-6) in a number of 

cases can be simplified, having broken the surface of the conductor 

into individual sections and consecutively calculating the mean 

potential of each of c.iem as a solitary body. Into these cases the 

mean potential of the whole conductor is determined by the formula 

■ 

*«»-W-»-4« (1-7) 
*-* 

where S^  is the area of the surface of the fe-th section; S  is the 

total area of the surface of the conductor; V    L  f..s the mean potential 

of the fe-th section; n  is the numb ?r of sections into which the 

surface of the conductor is divided. 

For wire the ratio S./S  in this form can be replaced by the 

ratio lfr/1,  where L is the length of the fe-th segment of wire, and 

I  is the total length of wire. 

From formulas (1-6) and (V-l) it follows that the capacitance of 

a riolJtary conductor calculated by the Howe method is determined by 

the expression 

C«~<«S»[f<^f-T-r. (1-8) 



V/ith calculation of the capacitance between two conductors, the 

mean potential of each of them is found from the formulas 

v    — - 

V    =-_«- kj(-i|£+ij£)<* (i-9) 

where 5, and Sp are the surfaces of each of the conductors considered 

(and also the areas of these surfaces); r,, and r?p are the distances 

between two points of one and the same conductor (of the first and 

second, respectively); r,p = v~,   is the distance between two points, 

one of which lies on the surface cf the first conductor and the second 

of which lies on the surface of the second; Q  is the total charge of 

one conductor. 

As in the previous case, calculation of mean potentials of 

conductors can be simplified, having divided the surfaces of each 

or of one of them into separate sections or segments (in the case of 

a wire) and having used formulas (1-7). 

In calculation of the difference of mean potentials between two 

conductors, use can also be made of the principle of mutuality of mean 

potentials, which consists of the following. 

The mean potential of conductor A  induced by charge Q,  is evenly 

distributed on conductor B, and is equal in absolute value to the 

mean potential of conductor B  induced by a charge - Qt  uniformly 

distributed on conductor A. 

U.-;e of formulas (1-9), taking the mutuality principle into 

account, leads to the expression 

'--"--ifif«14-AMS*      „.,„, ■i*n*-*w 



From formulas (1-10) and (V-2) it follows that the capacitance 

between two conductors calculated by the Howe method is determined by 

the expression 

(l-ii) 

When a system of two conductors is plane-parallel instead of 

(1-11) the next formula, analogous to it, for capacitance per unit of 

length of conductors should be used: 

where L, and £_ are the contours of the sections of conductors 

considered (and also the perimeters of these sections); ?,,, ri2» 

and i»p2 are the distances between the corresponding points on the 

contours of the sections (see designations to formula (1-9)). 

In calculation of partial capacitances in a system of many bodies, 

direct use of the method of mean potentials is difficult since it 

usually leads to bulky calculations. Therefore, in the given cases 

the method of mean potentials is used, as a rule, to calculate 

potential coefficients with subsequent conversion to partial capaci- 

tances on the basis of the relationships given in V-l. 

Calculation of mean potentials in a system of n conductors is 

based on utilization of the formula 

•■=   >STF- a-«) 



v/here V , . Is the mean potential of the i-th  conductor; Sh  is the 
La L1 1/ IV 

surface of the fe-th conductor (fe ■ 1, 2, ..., n)  and also the area 

of this surface; Q,   is the full charge of the fe-th conductor; r.y  is 

the distance between two points on the surface of different conductors 

(k fi i)  or one conductor (fe = i).     In this case between the quantities 

of the mean potentials of any two conductors (A  and B)  the relation- 

ship is L^atiofied1 

-*■- — . (l-l1*) Kflcp  YA 

where V.       is the mean potential of the conductor A, created by Acp r 

charge £„, uniformly distributed on conductor B; 7_  is the nipan 

potential of conductor B  created by charge Q., uniformly distributed 

on conductor A . 

In determination of partial capacitances the charges of all the 

conductors of the system must be taken as different from zero, and 

calculations made using formula (1-13), even allowing for relation- 

ship (1-14), become very lengthy. Upon finding potential coeffi- 

cients (when only one of the conductors must be considered charged) 

formula (1-13) is strongly simplified and coincides in form with 

(1-6).  This leads to the following expressions for intrinsic and 

mutual potential coefficients calculated according to the Howe method: 

^f^'f-TT» (1-15) 

k^'jv- "*"«*J"J '*' (1-16) 

(«■"or a plane-parallel system of n  conductors, analogous formulas 

take the form: 

'When \Q.\  =   \Q'\,   this formula expresses the principle of M1 " '"5" 
mutuality of mean potentials formulated above. 



I 

^"^"'f"™"' (1"1T) 

^-isferW''** (1-18) 

where a.^  ^  and a...   - are intrinsic and mutual potential coefficients 
per unit of length of conductors; L«s  L,   are contours of sections of 
the i-th and fe-th conductors, and also the perimeters of these 
circuits; r^ and v..   are the distance from any fixed point on the 
contour of the section of the i-th conductor up to a random point of 
this contour (r..) or the conto\ir of the section of the fe-th conductor 

I      irik)' 

All the above formulas for the calculation of capacitance by the 
Howe method are approximation methods. 

1. The values of capacitance of a solitary converter calculated 
by the Howe method [formula (1-8)] and of the capacitance between 
two conductors [formula (1-11)3 do not exceed the accurate values 
of these quantities. 

For a solitary conductor this affirmation follows directly 
from the variation principle of Gauss [1-3], which is expressed in 
the form 

fF(5)-o(5)<« 

*•<*—&  (1-19) 

where CQ  Is the true value of capacitance of a solitary conductor 
limited by surface 5; o(S) is any assigned distribution of charge 
Q  over surface 5; V(S)  is the potential at a random point of surface 
S  at assigned distribution of charge. 

"upposing in (1-19) that o(S)  ■ |, where S  also designates the 
area of tho surface of the conductor being considered, and uninp; 
formula (1-3), we obtain in the right side of the inequality the 
quantity being determined by formula (1-8). 



For the capacitance between two conductors the proof is con- 1 
1 ducted analogously. i 

I 
2. The values of intrinsic and mutual potential coefficients 1 

I 
[formulas (1-15), (1-16)] are greater than the true values of these        j 
quantities. 

I 
1 

3. For conductors of one and the same (or close) layout the | 

error of the method of mean potentials is less, the more uniform the i 

equilibrium distribution of charge on these conductors.  Specifically:      | 

the relative error of calculation of capacity of any straight f 

solitary wire (or cylindrical conductor) with the assigned form of I 

cross section is less the greater the ratio of its length to maximum I 

dimension of cross section, its lowest value is reached when the 1 

section is round; I 
| 
■i 

the relative error of calculation of capacitance of a flat 

rectilinear plate of assigned area is less the greater the ratio j 

of dimensions of the plate; 

i 

the relative error of calculation of capacitance of solitary 

conductors in the form of right polyhedrons inscribed in a certain 

sphere or described relative to it is less the greater the number of       j 

sides; j 
; 
J 

the relative error of calculation of capacitance between two 

plates of the same form and dimensions in one plane is less the 

greater the ratio of distance between plates to any dimension of j 

them. j 

Krrort: of calculation of capacitances are numerically evaluated 

by the Howe method taking into account the affirmations, by means \ 
of comparison of the corresponding approximation expressions with 

accurate ones (see Example 1-2). 
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Example 1-1. Let us determine the capacitance of a conductor 

In the form of an a  * b  rectangular plate. Using formula (1-8) 

i* dS let ur; precalculate \—• For this let us introduce a rectangular 

system of coordinates the origin of which is compatible with one of 

the peaks of the rectangular contour of the plate and direct the axes 

along the sides of this contour. Then the value of \-j-  at a certain 

point with coordinates a?,j j/, (0 < x.  < a;  0 < y,  < b)  will be 

determined by the expression 

- (t    rj forth ^Si + Arth -JM + 

+ <*-*) fArib J^a + Arsh-£-) +fk (Arsh i^h + Arsh &•) + 

+ *! forsh ~fi + Arsh -g-j « /(« ^ 

Repeatedly integrating,1 after the corresponding conversions 

we obtain 

m       • 

l fot» 4rsh — + Wo Arsh ~ + JL (o» + »»)- -J- (o« + M)T I • 
I fl »3 3 J 

Substituting the obtained expression into formula (1-8), we 

obtain the following approximation expression for the capacitance 

1 Using the symmetry of expression /(«,, y-,) relative to the 

quant Hi on entering it and also the obvious relation /»(«—»)*- 

-f?W*. where $ is a random function, it is sufficient to carry 

out integration of only one of the components entering /(a:,, y,) 
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of the plate considered: 

Co * 2n —  

a'6 Arsh —• + at« Arsh — + — (o» + V)—j- («' + **)T 

Example 1-2. Using the Howe method, let us determine the value 

of the capacitance of a conductor in the form of a solitary circular 

disc of radius R. 

Using formula (1-8) again, let us precalculate 

9        H 

M-lv«-*""-®' 
where E is a complete elliptical integral of the 2nd kind with 

modulus fe = r./fl. 

Then 

\dV f Jf- - 4* J d» J r,E (ijir, - Br.R» f *E (A) ik - X£2L. 

Substituting the obtained expression in formula (1-8), we find 

that the capacitance of a circular disc calculated by the Howe 

method is equal to 

The accurate value of the capacitance of the disc is equal to 

8zR,    Thus, the relative inaccuracy of the calculation of the 

capacitance of a solidary disc by the Howe method is about 7.555. 

In calculation of capacitance of closed shells, a fictitious 

charge can be considered distributed not only over the surface, 

but also in the volume of the bodies replacing these conductors. 
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In this case the general scheme of using the method of mean 

potentials remains constant; however, the features of its applica- 

tion depend on the character of distribution of charge in the volume 

of bodies. 

With continuous distribution of charge with assigned volume 

density p(v), the course of calculation differs only by the fact that 

to determine potential at points of the surface of the body instead 

of formulas (1-3) it is necessary to use formula (1-^). This does not 

usually lead to simplification of calculations since instead of surface 

integrals entering (1-3), it is necessary to reckon integrals in terms 

of volume. 

With continuous distribution of charge along certain lines in a 

volume of bodies (it is expedient to use such distribution in calcu- 

lating the capacitance of conductors of drawn out or axisymmetric 

form) in formula (l-*0 the volume density of a charge must be replaced 

by linear density, the volume integral must be replaced by a curvi- 

linear integral, and calculations are simplified. Thus, for a 

solitary axisymmetrical shell 

rff-Ifl 
where L  is the segment of the axis of symmetry inside the conductor 

(and also the length of this segment); S  is the surface of the 

conductor (and also its area); r is the distance from the fixed point 

of the surface S  to the running point of the axis L. 

With discrete distribution of charge in the volume of bodies, 

the potential at every point of surface of the body is calculated 

as the sum of potentials of point charges. 

1-3. Method of Grounds 

During the calculation of capacitance by the method of grounds 

the surface of each of the bodies replacing the conductors is 
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divided into a number of grounds the simplest possible form of which 

is selected and the dimensions of which are so small that the fictional 

distribution of charge in the limits of each ground can be considered 

uniform.l 

The surface of each ground is ascribed a fixed potential V.   equal 

to the potential at any one (characteristic) point of this ground. 

At sufficiently small dimensions of grounds, the method of 

location of characteristic points on their surface has comparatively 

little effect on the results of calculation. Therefore, it is usually 

selected only from conditions of simplicity of calculations.2 

The potential at the characteristic point of each ground can be 

determined with the aid of formula (1-3) and with the accepted law 

of fictional distribution of charge 

4K* I.I 

where V.   is the potential at the characteristic point of the fe-th 

ground; « is the number of grounds; o. is the density of a charge on 

the surface of the t-th ground; S .  is the surface of the t-th ground; 

r, .  is the distance from the characteristic point of the fe-th ground 

to a random point on the surface of the i-th  ground; ««'»l-r-' 

The value of coefficients <ZL .  are determined only by geometric 

parameters of grounds and their mutual location. When the distance 

between any two grounds considerably exceeds the dimensions of at 

least one of them (for example, the i-th), the quantity a^.  can be 

determined with sufficient accuracy as the ratio of the area of the 

l."oe examples of use of the method of grounds in works [1-5, 1-6]. 

The location of characteristic po: 
ds are usually selected identical 

geometrically similar grounds similar. 

2The location of characteristic points on the surface of identical 
grounds are usually selected identical, and on the surface of 
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■C-th ground to the distance between the characteristic points of the 
i-th  and fe-th grounds. 

The values of potentials of grounds (V^  « V^)  found from (1-20) 

in the limits of the surface of one conductor are equated with one 

and the same constant. 

For a solitary conductor this value (A)  can be selected at 

random. This leads to the following system of linear algebraic 

equations relative to unknown values of density of charge on the 

surface of each ground1 

flti«i + öii9|+ .... fatJI8<l«4sM, 

fl«i'i + o«i«i + ... + a,,,», m AstA. 

(1-21) 

Hence the charge density on the surface of the fe-th ground is 

ak = 4r.i.A-&-, (1-22) 

where 

au au ... am 

*n <*«, -' • °u 

".I a«t • • • a*. 

and AL is the determinant formed from A by replacement of all the 

elements of the fe-th column with ones. 

At the found values of o. the total charge of the conductor in 

general (at random separation of surface of conductor Into grounds) 

*In a number of cases from conditions of symmetry it is possible 
knowingly to show certain grounds with the same charge density. 
In these cases the number of unknowns in (1-21) is reduced. 
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is determined by the formula 

Q«4t«.i4.-l-SS»-A», (1-23) 

where S, Is the area of the fe-th ground. 

If all the grounds are identical, then 

Q = 4«/l-4-i!A„ (l-23a) 

where S  is the total area of the surface of the conductor. 

The obtained expressions for total charge lead directly to the 

following approximation expressions for the capacitance of a solitary 

conductor: 

a) in general 

b)  for identical grounds 

C,-4«-4-SA4. (l-24a) 
«A »-I 

During the calculation of capacitances in a system of two and 

more conductors, direct utilization of the method of grounds is 

difficult since it leads to lengthy computations. Therefore, in 

these cases the method of grounds is used, as a rule, to calculate 

coefficients of electrostatic induction with subsequent conversion 

to values of capacitance on the basis of the relationships given 

in § V-l. 

Lot the number of conductors in the system be equal to N,  and 

the number of grounds into which the surface of the p-th conductor 

is divided n (p » 1, 2, ..., N). Then the potential at the 

characteristic point of each ground can be found from formula (1-20) 
it 

when n=»2v Then the potentials of all platforms on the surface of 
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each conductor should be equated with one and the same constant 
A    (p » 1, 2, ..., If) j however, the values of the constants A    can no 
longer be assigned at random (as in the case of a solitary conductor), 
but must be selected taking into account the conditions indicated in 
V-l and V-5. These conditions are the simplest in the calculation of 
coefficients of electrostatic induction since the potentials of all 
conductors, except one, should be taken equal to zero. 

Let us assume, for example, that it is necessary to determine 
the intrinsic coefficient of electrostatic induction for the p-th 
conductor and the mutual coefficient of electrostatic induction for 
the p-th and q-th  conductors (p, q -  1, 2, ..., N,  p ? q).    Without 
losing generality one can assume that areas with numbers 1, 2, ..., n 
belong to the surface of the p-th conductor, and areas with numbers 
n    + 1> n„ + 2, ..., n + n belong to the area of the o-th conductor. p p p q 
Furthermore, let us assume that the potential of the p-th conductor 
is equal to a certain constant A. 

Then the system of equations for determination of unknown values 
of charge density on the surface of the grounds takes the form: 

2 ««»J = **•■* with*-1, %...., up, 
*-i 

a 
2<»M*i-0with *-«, + ! np + nr (1-25) 

The solution of this system again leads to formula (1-22), where 
this time AL is formed from A by replacement of the first n elements 
of the fe-th column with ones, and all the rest of the elements of 
this column with zeroes. 

The found values of charge density allow directly determining 
the quantity of total charge of the p-th and q-th  conductors, and 
thereby the sought values of intrinsic and mutual coefficients of 
electrostatic induction. The formulas for the determination of 
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these coefficients have the form:1 

hß " *** il«* (1-26) 

(1-27) 

The given formulas (1-24), (1-26) and (1-27) are approximation 

formulas, and, as can be shown, give underestimated value? of the 

capacitance of a solitary conductor an^ of coefficients of 

electrostatic induction in a system of two and more conductors. 

From the essence of the given method it is clear that the 

inaccuracy of calculation from these formulas is less the smaller the 

grounds into which the surface of the conductors is divided. At 

rather small sizes of grounds the accuracy of calculation of capaci- 

tance by the method being considered can be brought to any requir".v 

limits and, in particular, can be higher than when using the method 

of mean potentials. 

Example 1-3. Using the method of grounds, let us consider the 

same problem as in Example l-l, having assumed that the surface of 

the plate is dividad into 4 identical grounds, numbered as shown 

in Fig. 1-1. 

Fie. 1-1« Rectangular 
pT'-.te divided into H 
grounds. 

'With separation of the surfaces of the conductors into 
identical grounds formulas (1-26) and (1-27) can be simplified 
similar to formula (1-24). 
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Using a rectangular system of coordinates (Pig. 1-1) and selecting 
as characteristic points the points of intersection of diagonals of 
each ground, in accordance with formula (1-20) we find: 

art      4/4 

«II ■= \ -7.7- = 4 \ dx \ -—ig m a Arsh ~ + b Arsh — 

a/4   3»/< 

5, 0 t/4 

H Arsh — Arsh —. 
2 <J        2 » 

Sfl/4     36/4 

J    'W J J     /!• + #« 
ij 0/4        iH 

°'s!;- I -TT=   1 & 1 -77=^===^=«* Arsh-2- +«Arsh — - 

_4 b Ar*h -f --f- Arsh-^ --*- Arsb- x--^ Ar$l, A 
4 364 <>4 »4 3a 

H>       3o/4 

«H - \ -~ « 2 I %   I   77 - — -r- Arsh ~— 
r ds    r 

-^Arsh^ + JL Arsh *L + i?-Arsh-1 
2 «2 6        2      .    3a 

Because of the symmetry of the location of grounds o,  = a~ s 

* a-, s Ojj *  a«; furthermore, with the accepted division of surface 
into grounds a,, = ap? s s„ s a^j a,2 

= a-3h»  ai*? = a2lJ" Therefore, 
in system (1-21) it is sufficient to keep only one equation, whence 

a$ « 4« -J— = 4mA (a Arsh -J- + * Arsh y + y Arsh -J- + 

+ TArehTL + TArshT + TArshi)" 

Using then formulas (l-23a) and (l-24a), we find that with the 
means shown of division of plate into grounds, its capacitance is 

0,2*41* : : 5*  
a Arsh -f + b Arsh ■*- + Ü Arsh i + -S- Arsb -=■ + 

+ _LArsh^L + -^.ArshA. 
4 *       4 3« 
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1-k.     The Method of Equivalent Charges 

The method being considered consists of determination of the 

distribution of charges in the volume of bodies replacing conductors 

in the form of closed shells at which the surface of these bodies is 

equipotential.1     If such distribution of charges is found, then the 

values of capacitance in the system of conductors can be determined 

according to the formulas shown in § V-l, substituting in place of 

potentials of conductors potentials of surfaces of bodies, and instead 

of charges of conductors values of the total charge in the volume of 

each body. 

There is no general means of determining the distribution of 

charges creating electrostatic fields with assigned configuration of 

equipotential surfaces in existence at present. Therefore, in 

determination of capacitance from the method of equivalent charges, 

the reverse method i3 usually employed: assigning this or that 

concrete distribution of charges, the form of equipotential surfaces 

of electrostatic field is determined for each of them, and thereby 

a certain "set" of distributions of charges which create known 

fields is obtained. Using it, it is possible in a number of cases 

to find such a distribution of charges for which the form of equi- 

potential surfaces coincides (or closely enough) with the form of 

surfaces of the conductors considered. 

Sometimes the required distribution of charges can be found also 

directly from the assigned form of the surface of conductors. 

Thus, during calculation of capacitance in a system of conductors 

bounded by surfaces of spherical form, the required distribution of 

charge can be found direct:y by means of utilization of the following 

known features of electrostatic field of point charges. 

'At the shown distribution of charge the electrostatic field out- 
side the surface of the bodies coincides with the electrostatic field 
of the system of conductors being considered. In this sense the 
charges concentrated in the volume of bodies are equivalent to the 
charges distributed over the surface of the conductors. 

The method considered is also sometimes called the method of 
"consolidation" or "congelation" of equipotential surfaces. 

20 



1. In the field of point charge q  any spherical surface with 

center at the point of location of charge is equipotential. If the 

potential of this surface is equal to At  and the radius is equal to 

a, then tho charge located at the center of the sphere is q  * ^irea A. 

2. In a field of unlike point charges <?, and q_ separated by a 

distance of d, there is a surface of zero potential having the form 

of a sphere, the center of which is the line passing through the 

point:: of location of charges, and the radius of the sphere R  and the 

location of its center are determined from the relationships: 

?.: : ft*1 A, -SLfl; (1-28) 

where h1  and ft„ are the distances between the points of location of 

the charges <?, and q~  and the center of the sphere. 

At assigned radius of sphere Ä, and quantity and location of one 

of the charges (for example, charge q,), relationships (1-28) can be 

used to determine the quantity and location of the second charge q~» 

which is called the reflection of charge q^  relative to the sphere 

or simply the reflected charge. 

The application of these features allows showing the means of 

determination of distribution of equivalent charge in a volume of 

bodies bounded by spherical surfaces. In general form this method 

consists of the fact that, locating in the center of each sphere a 

charge of appropriate quantity, its influence on the potentials of 

the remaining spheres is compensated with the aid of a definitely 

selected system of reflections. 

Example 1-4. Let us determine the capacitance of a solitary 

conductor formed by two spheres of radii a  and b,  which intersect 

at an angle of TT/2; a > bt  and the distance between the centers of 

spheres I  > a  - b   (Pig. 1-2). 
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Fig, 1-2. A solitary conductor 
formed by two spheres with radii 
a  andb (a > b),  intersecting at 
right angles. 

Taking the potential of the conductor to be equal to the 

constant A>  we locate in the center of a sphere of radius a  (sphere 1) 

a point charge q1Q  = Hvea'A. 

In the field of this charge the surface of the sphere 1 acquires 

a potential 4, but the potential of sphere 2 is inconstant. Reflecting 

charge q^Q relative to sphere 2, we find that the reflected charge is 

In 
V a* + tß 

•»»-—**«' 
V **+» 

and is at a distance of 

V a* + tß 

from the center of sphere 2, i.e., at a distance of 

A;1-|/«»+*» 
V aß + tß V*-r» 

from the center of sphere 1. 

In the field of charges q^Q  and <?,, the potential of sphere 2 

is equal to zero, and sphere 1 is not equipotential. To restore 

constancy of potential of sphere 1 we reflect relative to it charge 

11 The reflected charge is 

1u aß qn m Ar.tbA 

and is at a distance of L, = "*' "*+*' ^ya* ; u»   from the center of 
i.e. a* 

sphere 1, i.e., at the center of sphere 2. 
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From the means of selection of quantity and location of charges 

q10, <?., and q->2>  it; is clear tnat ln an electrostatic field induced 
by them the potential of each of the spheres considered is constant 
and equal to A . 

Summarizing the found quantities <?-IQ» q-x\  and ^12» we flnd tnat 

the equivalent charge is 

Q ■ 9» + f 11 + 9a ■ 

-fcul/a + ft , "*  V 

Therefore, the capacitance of the conductor being considered is 

Example 1-5. Let us determine the capacitance of a solitary 
conductor formed by two adjoining spheres of equal radii (Fig. 1-3). 

Fig. 1-3.  Conductor 
formed by two tangent 
spheres of equal radii. 

Assuming again the potential of the conductor considered equal 
to A,  let us first pick the distribution of equivalent charge at which 
one of the spheres (sphere 1 for sure) has potential equal to A, 
and the other has potential equal to zero. 

The required value of the potential on sphere 1 is obtained, 
as before, placing in its center a point charge ?10 

= bireaA,  where a 
is the radius of the spheres. However, the potential of sphere 2 
in this case is not equal to zero. To achieve zero potential on 
sphere 2 we reflect charge ?,Q relative to this sphere. In this case 
we obtain the reflected charge <J-,-y»  the quantity and location of 
which is shown in Table 1-1.  In the field of charges q1Q  and <?,, 
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Table 1-1. Quantity and 
location of Initial and 
reflected equivalent 
charges for the conductor 
shown in Fig. 1-3.l 

«1» V* o.cw 
4««/U 

wl « 

0 1 2a 0 

1 1 
2 

a 
2 

3» 
2 

2 
3 

. 4a 
3 

2a 
3 

3 
4 

3g 
4 

—-a 

4 s 
e — a 
5 

—-a 

5 1 
6 

S — a 
6 "jT* 

I (-1)» f-tfri- [-^1« *+l 

lCk  and ö2Cfe are the 
distance of the point of 
location of charge q,. 

from the centers of spheres 
1 and 2, respectively. 

the potential of sphere 2 is equal to zero, but the potential of 

sphere 1 is inconstant. To restore the constancy of this potential 

we reflect charge q^  relative to sphere 1, finding the charge shown 

in Table 1-1 q^-    Continuing this process (see Table 1-1), we see 

that the required values of potentials of spheres can be achieved 

only with an infinite number of reflections; the fe-th reflected 

charge is 

ft* 
(-0* 

fir 

2k 



In completely analogous manner a distribution of equivalent- 

charges <72fc* can be found with which the potential of sphere 2 is 

equal to A,  and the potential of sphere 1 is equal to zero. In this 

f1      case it is obvious that q.y  * <??fe' 

In the total field of all charges found in this way the potential 

of each sphere is equal to one and the same constant A.    Therefore, 

in thl . case the equivalent charge is 

co m 

f~v   ■ftmüMn'a. 
A + l 

Thus, the capacitance of the conductor considered is 

The scheme of application of the method of equivalent charges 

for calculation of capacitance between two conductors is analogous 

to the scheme of calculation of capacitance of solitary conductors. 

An example is the calculation of capacitance between two spheres 

given in [1-4]. 
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CHAPTER  2 

AUXILIARY METHODS IN THE DETERMINATION UP CAPACITANCE 

2-1. General Remarks 

The methods considered in the present chapter pursue the objective 

of bringing the problems of determination of capacitance to a form 

permissible for calculations or to a form simplifying them. Such 

methods will subsequently be called auxiliary methods. 

The majority of auxiliary methods consist of geometric conver- 

sions of systems of conductors and are based on the fact that in some 

of these conversions the values of capacitance remain constant or 

vary in a known manner. If such conversion is carried out, then the 

problem boils down to calculation of capacitance in the converted 

system, which can be done either by methods of direct determination 

of capacitance or by means of calculation of electrostatic field. 

Some of the auxiliary methods are based on simplification of the 

problems of calculation of electrical field (and thereby of capaci- 

tance) with constant geometric parameters of the system of conductors. 

Such methods consist in introduction of the relief functions, which 

are connected in a known way with the potential of the electrostatic 

field, but satisfy simpler boundary conditions.  If tne introduced 

auxiliary functions satisfy the Laplace equation, then the problem of 

their calculation turns out to be simpler than calculation of the 

electrostatic field. 
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2-2. Method of Conformal Conversions 

The method of conformal conversions is used to calculate 

capacitance in plane-parallel systems consisting of two or more 

conductors. The basis of the method is the feature of capacitance 

to remain constant during conformal conversions of shown systems (the 

invariance of the capacitance relative to conformal conversion). 

Let us recall that conformal 'onversion is geometrical conversion 

in which the angles between any two intersecting lines remain constant, 

and the length of all infinitesimal segments passing through the given 

poi"t of the plane changes the same number of tfnes. Conformal con- 

version is described by the analytical function of a complex variable 

on condition that this function is unambiguous, and its derivative in 

the reflected area nowhere turns into zero. The analyticity of the 

function of the complex variable W(z) = $(xt  y)  ■/■ i\\>(x,  y)  is checked 

with the aid of the conditions of Cauchy-Riemann: 

ÜL-ÜL. A—Ä.' 
dx     dy      dg Ac 

The invariance cf capacitance relative to conformal conversion 

permits replacing the problem of determination of capacitance of any 

plane-parallel system of conductors by calculating the capacitance 

of another system obtained from the initial system by means of one or 

several repeated conformal conversions. If, especially, the initial 

system can be reduced to any system with known capacitance, then it 

thereby ceases to be necessary to calculate capacitance. 

With practical utilization of the method considered, the section 

of the plane-parallel system of conductors is taken as the plane of 

the complex variable a, and a conformal conversion ,f(s) is selected 

as a result of which the system takes a simpler form permissible for 

xThe reader will find more detailed information on conformal 
conversions in numerous works on the theory of functions of complex 
variable, for example, in works [2-1 to 2-4]. 
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calculations. Expressions for the functions which realize conformal 

conversion of some simple areas to upper semiplane are given in 

Table 2-1. 

Table 2-1. Conformal conversions of very 
simple areas tn  v~per semiplane. 

Form of initial 
area in plane s 

The function which realizes 
the conformal reflection of 
the area in plane a  on the 
upper half-plane of plane c 

c--?-* 

<-*•" (T-T) 

C-Ot-sh* (f-t) 

C —o-tfa (f-4-) 

C-V7T5 
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Table 2-1 (Continued). 

Form of initial 
area In plane 2 

The function which realizes 
the conformal reflection of 
the area in plane a on the 
upper half-plane of plane £ 

C-Ä mi 
t- -—^ [at-b.Vt* -(a* - 

when «**. 

(- ** + ** when«-» 
2» 

Note. aQ - the dimensional coefficient 

of length, numerically equal to one. 

In a number of problems encountered in practice the geometry of 

systems proves to be so complex that it is Impossible to carry out 

its conformal conversion to a form permissible for calculations. In 

these cases use is sometimes made of methods of approximation conformal 

conversions (see, for example, [2-4]). 

Example 2-1. Let us determine the capacitance (per unit of 

length) between an infinitely long elliptical cylinder and an infinite 

band, the sections of which are shown in Pig. 2-la. 

a) 3 

b) 

c) 

Pig. 2-1. Elliptical 
cylinder and infinite 
band in boundless homo- 
geneous medium: a) 
initial system; b) 
auxiliary system obtained 
by cutting the initial 
system with a plane of 
its symmetry; c) reflected 
system in plane t,. 
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The sought capacitance is equal to twice the capacitance between 

the conductors presented in Fig. 2-lb. To calculate the capacitance 

of this auxiliary system we use the method of conformal conversions, 

taking plane xOy  as the plane of the complex variable a. According 

to Table 2-1, the  function conformally reflecting the area considered 

on the half-plane of the new complex variable C (Pig. 2-lc), has the 

form 

*-—*—.[at-bV*-+ + *)> 

With the aid of this expression we find the coordinates of the 

edges of the plates of the reflected system: 

cfl — tß 

«i- -r— i«(« + 4 + e)-M/(a+rf + c)«-(a»-*»)]. 
a» — »* 

Inasmuch as the geometric parameters of the converted system 

are now known, it is possible to consider the problem of determination 

of its capacitance in the normal way (presentation of the plane of the 

section of this system as the plane of a complex variable was only 

an auxiliary method necessary for construction of the converted 

system). 

Using, especially, the method of direct determination of field 

strength (see § 2-6), it is possible to obtain that the capacitance 

of the converted system is 

d-fcJSlfit, (2-1) 
K(*) v   ' 

where K(fe) and K'(fe) • K\/l  - fe2) are complete elliptical integrals 

of kind I with modules being determined by formula (2-24).1 

Specifically, when a  « b  (circular cylinder), the expression for the 

'The basic concepts relating to elliptic integrals are »riven 
in Appendix 1. 
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module of elliptical Integrals takes the form: 

*-l/"^""°)(3a + c + <0 
V     (3a+<Q(c + d-a) ' 

Inasmuch as capacitance Is invariant relative to conformal 

conversion, formula (2-1) determines the capacitance of the system 

depicted in Pig. 2-lb. Thus, the sought capacitance of the initial 

system (Pig. 2-la) is determined by the expression 

C-4. K' 

Example 2-2. Let uts determine the capacitance (per unit of 

length) between two conductors, each of which is formed by the 

joining of two infinitely long bands depicted in Pig. 2-2a. Using 

the general features of capacitance (§ V-2), It can be established 

that the sought capacitance C, is four times as great as the capaci- 

tance Cy,  of the auxiliary system shown in Pig. 2-2b, 

C,-4C„. 

a) 

-* •%L 

t 
-4 

Fig. 2-2. System of two conductors, each of 
which is formed by the Joining of two symmet- 
rically located Infinite bands: a) initial 
system; b) auxiliary system obtained by means 
of cutting the Initial system with the plane 
of its symmetry; c) reflected system in plane ?. 

To detect capacitance C\ ^ we use the method of conformal con- 

versions. Taking the plane of section of the auxiliary system as 

the plane of the complex variable a, let us select the reflecting 
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function in the form of C «■«■•*. which, as is evident from Table 2-1, 
«• 

converts the auxiliary system considered into a system of two plates 

lying in one plane (Fig. 2-2c). The capacitance (per unit of length) 

between these plates is determined by the above formula (2-1) if the 

modulus of elliptical integrals is assumed to be in it 

A,/jfl±ÜLÖ!+il. (2..2) 

Thus the sought value of capacitance is 

K 

where the value of the module of Integrals is determined by expression 

(2-2), 

2-3. The Method of Spatial Inversion 

The method of spatial inversion1 is applicable during calcula- 

tion of capacitance of solitary conductors in a homogeneous medium 

and is based on the use of geometrical conversion of the surface of 

these converters by their reflection reflective to the sphere. 

Reflection (or inversion) relative to a certain sphere of radius 

ÄQ (the radius of inversion) is geometrical conversion in which any 

point with spherical coordinates rj 8; $ becomes another (inverted) 
2 

point with coordinates ÄQ/r; 9; <fr. The locus of inverted points of 

a certain surface forms an inverted surface, which in a number of 

cases has a simpler form than the original. The determination of 

inverted surfaces is carried out either according to an assigned 

equation of initial surfaces (by replacement in it of the coordinate 
2 

r with the coordinate r-, ■ ffQ/r) or by means of direct construction. 

*Do not confuse with the method of plane inversion (reflection 
relative to a circle), which is a special case of the method of 
conformal conversions. 
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The latter is substantially facilitated by  the fact that spatial 

inversion keeps constant the angles between any two intersecting lines 

In using the method of inversion one ought to have in view that 

a reflection relative to a sphere is reversible; therefore, any of 

the surfaces that correspond to each other can be considered both 

original and inverted. 

A number of very simple examples of inversions are given in 

Table 2-2. The capacitance of a solitary conductor the surface of 

which is converted by means of reflection relative to a sphere can be 

determined according to . rmula [2-5] 

4-ta.J&V» (2-3) 

where e is the specific inductive capacitance of the medium; VQ  is 

so-called normalized potential in an inverted system. 

To determine potential VQ  it is necessary: 

1. Considering an inverted surface a surface of a grounded 

conductor (V ■ 0), to dispose in the center of inversion a point 
charge qQ  numerically equal to -JfTre. 

2. Having calculated the electrostatic field of the shown 

point charge inside the grounded inverted surface,1 to find the 

density of the charges induced on this surface from the relationship 

-£l- 
where w is the potential of the found electrostatic field, and n is 

the internal normal to the inverted surface a. 

3. Using formula (1-3)» to find VQ  as the potential in the 

center of inversion being induced by induced charges. 

'This problem coincides with the determination of th>; Green 
function for an inverted surface (see § 2-6}. 
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Table 2-2. Spatial inversion of certain very simple 
surfaces. 

Initial surface Inverted surface 

Sphere of radius R  encom- 
passing sphere of inversion 
and concentric with it 

A sphere of radius 

ft* fti — -£-,  encompassed by a 
sphere of inversion and 
concentric witn it 

A sphere of radius R  the 
center of which is at a dis- 
tance of b(b  > R + RQ)  from 

the center of inversion 

A sphere of radius 

*t-*o a pi' the center 

of which is at a distance 

of ft. 
tß—R* 

ter of inversion 

from the cen- 

A sphere of radius R  passing 
through the center of 
inversion 

A plane passing at a 

2ft 

the center of inversion 

distance of * from 

Mi 
%-K 

V 

Circular disc of radius R 
perpendicular to the radius 
of a sphere of inversion at a 
distance of h  from its center 

,.-K       , 

Part of the surface of a 
ft* 

sphere of radius fti--^". 

cut by a rip;ht circular 
cone the peak of which \v, 

at point (-4) t\i<:  anplo 

at the peak is «-2«cig — 
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With the simple form of inverted surface the calculation of 

electrostatic field necessary for the determination of fQ is simpler 

than the initial problem of calculation of capacitance. Specifically, 

when an inverted surface if formed by the intersection of several 

planes, the electrostatic field of a charge qQ  inside a grounded 

inverted surface can be calculated using the principle of mirror 

reflections, and the potential is found simply as the sum of the 

potentials of reflected charges. 

Example 2-3. Using the method of spatial inversion, let us 

determine the capacitance of the same conductor as in Example 1-4 

(two spheres intersecting at right angles). 

Considering the meridional section of this conductor (Pig. 2-3a), 

let us dispose the center of inversion at one of the points of 

intersection of circumferences, for example, at point At  and let us 

take the radius of inversion equal to the diameter of one of these 

circumferences, for example, RQ  » 2c. 

Pig. 2-3. The conductor formed by two spheres 
intersecting at right angles with radii a  and h 
(a > b):    a)is the section of the initial and in- 
verted surface; b) is the system of mirror reflec- 
tions of charge qQ * -kite,  located at the center 

of inversion relative to the inverted surface. 
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MBWMg^pil|!pil»l»|]urTr—t- 

As Is evident from Table 2-2 or from direct construction, the 
Inverted surface in the given case is formed by two semi-infinite 
planes intersecting at an angle of ir/2 at point Bf, which is the 
initial surface inverted for point B. 

Placing further in the center of inversion a negative point 
charge qQ  = -Hire, we take the potential of the inverted surface equal 
to zero. Constructing then the systein, of mirror reflections of this 
charge relative to the shown half-planes (Pig. 2-3b), we find that 

4a  4a»   4aKa» + *« 

Substituting the value of VQ  into formula (2-3), we have 

C, - 4«4a»-l (l + -i—   *   \ - 4«.a (l + ±-       ,f   \ . 
4a\       «  V«t + fti ) \       «  Ka« + M ) 

which coincides with the formula obtained in Example 1-4 by the 
method of equivalent charges. 

2-k.    The Method of Symmetrlzation of Conductors 

The method of symmetrlzation is used in lower estimation of the 
values of the capacitance of solitary conductors in a uniform medium, 
and is based on utilization of geometrical conversion called 
symmetrlzation. 

In general symmetrlzation can be defined as geometrical con- 
version of a spatial or planar body which permits reducing it to a 
form symmetrical relative to a certain plane or axis. 

The aymmetrization of tue spatial body relative to a plane 

(so-called spatial symmetrlzation of Steiner) is carried out in 
the following manner. 

Let there be a  certain spatial body A  and any plane P (plane of 
symmetrlzation).  Drawing through every point of the surface of 

36 



tody A  straight lines perpendicular to P, plotted on the«v straight 

lines symmetrically relative to P are segments equal to the total 

lengths of the chords being cut on the straight line being considered 

by body A.    The locus of the ends of such segments forms the surface 

of a new body symmetric relative to plane P. Thus, for instance, 

a hemisphere of radius a  with symmetrization relative to any plane 

parallel to its base becomes a condensed spheroid with axes 2a 

and a. 

Completely analogously carried out is symmetrization of the flat 

body relatively to any straight line in its plane. One of the 

examples of such symmetrization is given in Pig. 2-4. 

a) 

b) 

Pig. 2-1. The symme- 
trization of an arbi- 
trary flat plate: a) 
initial; b) symmetrized 
plate. 

Symmetrization of epatial body relative  to an axis   (Schwary 
symmetrization) consists in the following. 

Given a certain spatial body A  and any straight line L  (axis of 

symmetrization). Drawing through the points of the surface A  planes 

perpendicular to £, plotted at each of them is a circle with center 

at L  equal in area to the section of body A  by the plane being con- 

sidered. The locus of such circumferences forms a surface of new, 

axisymmetric body. Thus, for instance, a cube with side a  with this 

means of symmetrization relative to the axis parallel to one of its 

ribs becomes a right cylinder with altitude a  and radius a/W. 

Apart from this there are other, less widespread means of 

symmetrization. 
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Use of the method of symmetrization when evaluating capacitance 

is based on the fact that capacitance by any means of symmetrized 

solitary conductors never exceeds the capacitance of these conductors 

in their original form [1-3], i.e., £0cMM < CQ.    Therefore, having 

determined in one way or another the capacitance of a symmetrized 

conductor, the lower boundary of capacitance of the conductor of 

initial form can be determined in the same way. 

If after a single symmetrization the form of the conductor still 

remains so complex that the capacitance of the symmetrized conductor 

cannot be found, then symmetrization is carried out repeatedly, until 

the form of the symmetrized conductor is simple enough.1 Thus, the 

method of symmetrir.ation permits determining the boundary for the 

capacitance of a solitary conductor of a form no matter how complex. 

Example 2-h.    Let us find the lower boundary of the values of 

the capacitance of a flat plate in the form of a semicircle of 

radius a. 

The capacitance of a conductor of the form considered cannot 

be accurately calculated by existing methods. Therefore, we deform 

the conductor in advance by means of planar symmetrization relative 

to a straight line parallel to the base of the semicircle. The form 

of a conductor thus symmetrized can be determined in the following 

manner. 

Let us introduce rectangular coordinates (x, y)  with origin at 

the center of the semicircle, having combined the Ox  axis with its 

base.  Then the connection between the coordinates of points on the 

contour of the initial (a?, y)  and symmetrized (x.. , y.)  plates will 

he determine'.'! by the equations 

xWith an infinite number of symmetrizations the surface of any 
conductor of spatial form is converted into a sphere. 
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Hence -L + -Ü— -l, i.e., the symmetrized conductor has the form of a 

planar elliptical disc with axes 2a  and a.    The expression for the 

capacitance of an elliptical disc is known [see formula (4-3)]. 

Using it, we find that the capacitance of a plate in the form of a 

semicircle of radius a  satisfies the inequality 

•c« >  *"L. - 8»a-0,7Ä m 
2-5. The Method of Small Strains 

The method of small strains is based on replacement of con- 

ductors of assigned (complex) form with other conductors of close 

but simpler form, which permits calculating electrostatic field or 

directly determining capacitance. 

The strain of the surface of a conductor (as of any other body) 

is commonly called small, if the displacement of the points with 

respect to the normal to the surface of this conductor (ft) is con- 

siderably less than its characteristic dimensions and is a continuous 

function of surface. Under these conditions the potential and strength 

of the electrostatic field of the electrodes, Just as their capaci- 

tance, can be presented in the form of an exponential series of ft, 

the zero term of which characterizes the electrostatic field (or, the 

capacitance, respectively) of an unstrained electrode. Limiting 

ourselves to this or that finite number of terms of this series, it 

is possible to obtain approximation expressions for an electrostatic 

field or the capacitance of the considered electrodes of complex 

form. The characteristics of utilization of the method of small 

strains depend on the number and form of conductors entering the 

system considered. 

Let us consider for example, the problem of determination of 

the capacitance of a solitary conductor of "almost spherical" form 
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[2-6], i.e., of a conductor the surface of which 5 can be determined 

by an equation of the form 

where r; 6; <b are spherical coordinates of the points of the surface 

of the conductor; ÄQ is the radius of a certain sphere close to the 

surface of the conductor considered ("reference" surface); 6(6; $) is 

the comparative amount of the normal displacement of the points of 

the surface of the conductor from the surface of the sphere: 

M»;?)»iEji.;  |t(|; T)|<1. 

The quantity 5(6; <J>) can be presented in the form of 6(6; $) « 

= 6Q«F(6; <{>) where 6Q is the comparative normal displacement at any 

fixed point of the surface of the conductor; F(6; <J>) is the function 

which characterizes the distribution of normal displacements with 

respect to the surface of the conductor, and 

PP. t)-FQi++ *)• 

Assigning the fixed quantity of the potential of the surface 

V\s-A. (2-5) 

we will search for the potential of its electrostatic field in the 

form 

.»-7+V>,U (2-6) 

where D  and vAr;  6; <)>) are the constant and function to be determined, 

respectively.l 

.",ub:;t1tutin/>: thin expression into the boundary condition (2-5), 

we find that 

D 

fttli + VftiN 
+ hVi (R.11 + V<*. f)fc•% *)• (2-7) 

'Let us note, that the given means can be generalized to the case 
when the "reference" surface selected is any (not only spherical) 
surface the form of which admits the solution of the external problem 
of Dirikhle for the Laplace equation. 
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Expanding the right side of this equation Into an exponential 

series of small parameter 6Q and retaining the terms of this series 

containing 6Q to a power not above the first, we obtain 

>i-A + %J_F(e;,)A 4M*.: •;?)]• (2-8) 

Inasmuch as the left side of equation (2-8) does not depend on 

6 and <|>, the right side of it also should not depend upon these 

quantities. This is executed, especially, on condition that 

- f<•; ?>• 4-+*• «* *•»>-*• (2-9) 

Prom (2-8) and (2-9) it follows that 

Vi<*.:M)-<tF ft* (2-10) 

The last of the given equations can be considered the boundary 

condition for determination of a harmonic function VAr;  9; <J>) at 

any point of an area outside a sphere of radius RQ,    Thereby the 

boundary surface of the problem was deformed into a sphere. Determi- 

nation of vAri  0; $) with such a form of boundary surface can be 

carried out with any assigned type of function F(6; <J>) by the method 

of distribution of variables (see, for example [2-7]). 

Substituting the expression found for vAr;  6; <j>) in (2-6), it 

is possible to obtain the approximation formula for the potential 

of the electrostatic field of the conductor considered, and then, 

using the general expressions (V-l8), (V-l), approximately to find 

its capacitance. The approximation formula obtained by such a method 

for the determination of the capacitance of a conductor of "almost 

spherical" form has the form 

C,«4i:«A,(l+Mf). (2-11) 

where M  is the coefficient with the first term of the expansion of 

function V^(r;  6; $) into an exponential series of 1/r.  In general 
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this coefficient is determined [2-7] by the formula 

Al--l-TdffJ'fc t)»ia«A (2-12) 

If the conductor is axisymmetric, then 

A*-4-jfW,,o8A (2-12a) 

If more accurate formulas must be obtained, the equation of the 

surface of the conductor can be assigned in the form 

•Ä#fl+jSj«toft «1. 

where 

IT     I 

In this case, finding the potential of the electrostatic field 

in the form 

D   * 
v C: «;T)--7-2 «oy» <"•••») 

and using the given method, it is possible to obtain the following 

approximation formula for the capacitance of a conductor of "almost 

spherical" form 

C,« 4*tff,(l + %M% + «Jtff + .. . +JJAI.). 

where M    is the coefficient at the fe-th term of the expansion of 

function V(r>;  0; <f>) into an exponential series of 1/r. 

Example 2-5. Let us determine the capacitance of a solitary 

conductor of axisymmetric form the section of which is described 

by the equation 

"■A«U + M«>*,«-cos*)|. IM<i. 
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V/ith the assigned type of equation of the surface of a conductor 

it:; capacitance can be determined only as a first approximation: 
2 

F(e) ~ cos 6 - cos 6.  Substituting this expression F(9) into formula 

(2-12a) and integrating, we find that M  ■ 1/3. Then in accordance 

with (2-11) 

C(a4«tft,fl + .5i\, 

In using the method of small strains to calculate capacitance 

in a system of two conductors, it is possible to make use of the 

fact that the relative change in capacitance between any two con- 

ductors with any strain of them is expressed [2-8] by the formula1 

-*£.= » . (2-13) 

w 

where LC  is the absolute value of the change in capacitance; C  is 

the initial capacitance between conductors; 5. and £~ are the strength 

of an electrostatic field before and after strain, respectively; 

v  is the volume of space in which the electrostatic field being 

considered exists (if one conductor wholly encompasses another, 

then v  is the volume limited by the surfaces of the electrodes); 

Ay is the change in y as a result of the strain of the electrodes. 

If the strain of the conductors is small, then £, = E~  * t  and 

AC „ 1— 
C * JE*,-' 

(2-1H) 

where S  is the Initial surface of the conductors; h  is the quantity 

of the normal mixing of the points of an initial surface during strain, 

JThe given formula can be generalized also to the case when the 
media filling the space between electrodes is heterogeneous. In 
this instance the specific inductive capacitance of the medium should 
be introduced by a factor into the subintegral functions of the 
numerator and denominator. 

43 



Formula (2--14) allows approximately calculating the capacitance 

of any little strained system of two conductors, if only the electro- 

static field of this system in its initial state is known or can be 

found.x 

Example 2-6. Using the method of small strains, let us find an 

approximation expression for capacitance (per unit of length) between 

two noncoaxial cylinders, one of which encompasses the other (Pig. 2-5). 

Fig. 2-5. System of two 
infinitely long cylinders 
with parallel axes dis- 
placed a distance of d 
from one another. 

If d < r  < Rt   then the system being considered can be presented 

as the result of the small strain of a system of two coaxial cylinders 

with radii R  and r. Introducing polar coordinates p, <J> with center 

at point 0, we find that for any value of ♦ the amount of the normal 
displacement of the surface of an interior cylinder is 

A _ r - OB - f r 1 - l/i-TlY^ + _1 co» f I. 

The strength of the electrostatic field in the space between 

the coaxial cylinders is determined by the known formula 

B-'-A Rr I 
R—r     f* 

where A  is the difference in potentials between cylinders. 

JIt is understandable, that any of the surfaces considered can 
be taken as the initial and strained surfaces. 
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Taking into account that in the case being considered ds  « r-d<J>; 
dv  » pdpdQ  and substituting the obtained values for h  and E  in 
formula (2-14) we find 

where E(d/r) is the complete elliptical integral of kind II. 

From the general features of capacitance shown in § V-2, it 
follows that the increase in capacitance induced by the strain con- 
sidered is positive, on volume C-, - C- + Atf, where C«  and C,. are 
the capacitances between coaxial and noncc^xial cylinders, respectively. 
Using the known expression for C-, we obtain the following approxima- 
tion formula for capacitance (per unit of length) between two non- 
coaxial infinitely long cylinders: 

c- *• 
*4 "+T-"—77TT»-«m • (2-15) ^a+-H* 

To evaluate the inaccuracy of this formula let us compare it 
with the known accurate expression for capacitance between ncncoaxial 
cylinders, which has (see S 5-^) the form 

cft 22  (2-16) 
Arcb*±£=* 

2ffr 

If we obtain, especially, r/R  « C.5, d/r  « 0.3, then using 
formula (2-15) (C^/2-ne)  * 1.53 while the accurate value of this 
quantity calculated from formula (2-16) is equal to (C-/2ire) ■ l.i»8. 
Thus, the comparative inaccuracy of the calculation from formula 
(2-15) in a given case is 3.W. 
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2-6. Methods of Auxiliary Functions 

Methods of auxiliary functions consist in simplification of 

problems of calculation of electrostatic field (and respectively of 

capacitance) of conductors with their constant geometric form. 

These methods are:  a) the method of function of source (the 

method of Green); b) the method of direct determination of field 

Intensity; c) and the method of consecutive approximations. 

The first of the £>iown methods allows reducing uniform1 boundary 

conditions assigned on any surface to zero conditions; the second 

method makes it possible to replace compound boundary conditions on 

the surface of some plane-parallel systems with uniform boundary 

conditions; the third of the enumerated methods allows simplifying 

compound boundary conditions on the surface of some typical systems. 

The method of function of source  is based on use of the formula: 

Vfc-^'-Sr* (2-i7) 

where V„ is the potential at a certain point S  inside the closed 

surface 5; n  is an interior normal to this surface, and G  is a Green 

function of kind I determined in the following manner: 

a) at any point inside surface S  function G  ■ i + /, where r  is 

the distance from point N  to a random point lying inside surface 5 or 

on this surface itself; / is a random harmonic function (hence It 

follows that function G  is also everywhere harmonic, except point 

r » 0, where it has the feature of type 1/r); 

*Let us recall that uniform boundary conditions are boundary con- 
ditions in which the values of one and the same function are assigned 
on the entire boundary, and compound boundary conditions are boundary 
conditions in which the values of various functions are assigned in 
Individual .sections of the boundary surface (for example, in one 
sioctlon of the boundary surface potential is assip-ned, and in another 
Its normal derivative is assigned). The solution of the boundary 
problems under compound boundary conditions, as a rule, is considerably 
more complex than under uniform boundary conditions. 
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b) at all points of surface S  function G  ■ 0. 

Formula (2-17) makes it possible to calculate the electrostatic 

field inside surface 5, if the values of the potentials on this 

surface are assigned and the Green function G  is found. 

From the given determination of the Green function, it is evident 

that it coincides with the potential of the electrostatic field of 

a point charge numerically equal to lire and in a volume bounded by a 

grounded metal surface S, i.e., inside a surface with zero boundary 

conditions. Determination of this auxiliary function in a number of 

cases is simpler than solution of an initial problem with nonzero 

boundary conditions. Therefore, the method considered is widely used 

both in the calculation of electrostatic fields, and in the direct 

calculation of the capacitance of a number of conductors.2 

The method of direct determination of field strength   is used to 
calculate a certain class of flat electrostatic fields with compound 

boundary conditions. This method is based on the preliminary determi- 

nation of auxiliary function y(xt y)  expressing the size of the angle 

formed by the vector of electrostatic field strength at any point of 

the area considered with one of the axes of the Cartesian system of 

coordinates. Function Y(«» y)  is harmonic [2-9]: it satisfies the 

two-dimensional Laplace equation. Boundary conditions for this 

function can be established from conditions of orthogonality of power 

and equipotential lines of field and, as is seen from the illustration 

given in Fig. 2-6, can be uniform even when potential is assigned in 

one part of the boundary surface, and its normal derivative is assigned 

on the other. 

tn connection with this the problem of calculation of function 

Y(*» y)  proves to be considerably simpler than the initial problem 

of calculation of potential under compound boundary conditions. 

'Thus, calculation of capacitance by the method of spatial 
inversion actually boils down to computation of Green function at 
the center of inversion (compare with § 2-3). 
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fc-%) y 

Fig. 2-6. Boundary conditions for a 
potential and an angle y(xt y)  in the case 
of a system of plates lying in one plane. 

Having found this auxiliary function, it is possible then directly 

(passing the stage of determination of potential) to find the modulus 

of the strength of the electrostatic field of the system of conductors 

being considered from the relationships: 

*I , *(ln|E|). 
dx dy      ' 

*L ÜÜiiil 
dy 9M 

(2-18) 

From (2-18) it is possible, especially, directly to determine 

the modulus of the strength of a planar electrostatic field created 

by u. system of any number of charged infinitely long plates lying 

iv one plane. 

In the points of this plane (y  = 0) the modulus of the strength 

of the electrostatic field of the system considered is determined 

by the formula 

l*U (2-19) 

where xn.', yn.  are coordinates of the special points of the field, 

i.e., of points in which E ■ 0; m  is the number of special points; 

a. is the coordinate of the edges of plates; n is the number of 

platen; B  is a constant determined (along with the constants xQi 
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and HQJ)  from assigned charges or potentials of conductors. In 

particular for an electroneutral system consisting of two plates 

(Fig. 2-7), 

IEI  — ". ,J"° V\(* -aMx-aj{x-aM*-°$' (2-20) 

Using formula (2-20), it is possible to find that the difference in 

potentials between the plates is 

Vt-Vt=\\E\,.4il*~B\ * 
J  ■'      J Vi*-al)ix-a^(at-x)(at-x) (2-21) 

and the charge per unit of length of each plate is 

? = 2»flE{   A-2tflf - g 
J  y      J 1 C* - ai)(«t - *)(<•, - *) (««- *) 

(2-22) 

0     «j    Ü 

Pig. 2-7. Two infi- 
nitely long plates 
lying in one plane. 

Calculating the integrals entering expressions (2-21) and 

(2-22), we find that the capacitance (per unit of length) between the 

plates considered is 

C, 
V.-Vt (2-23) 

whore K(tt)   !n  Urn  complete elliptical integral of kind T with modulur 

A = l/ <a»-««><«« — gi| 
r.  («i — a»)(a,-a,) * 

K/(A)-K(KrI^?). 

(2-24) 
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The method of direct determination of field strength is especially 

effective in conjunction with the above (§ 2-2) method of conformal 

conversions. Thus, because of invariance of capacitance during 

conformal conversion, formula (2-23) determines the capacitance 

between any two infinitely long conductors, which as a result of this 

or that conformal conversion can be reduced to the form shown in 

Fig. 2-7. In this instance the coordinates of the edges of plates 

are determined from assigned parameters of the initial system with 

the aid of an appropriate reflecting function (see Examples 2-1 and 

2-2). 

Example 2-7.  Let us determine the capacitance per unit of length 

between the conductors presented in Pig. 2-8. 

1 2 3 
Pig. 2-8. Three infinitely 
long plates lying in one 
plane; plates 2 and 3 are 
interconnected. 

From the type of system considered it follows that in the 

electrical field induced by it, only one special point can exist 

which is located on plane y 0; a1 <  a?0 < ap. Therefore, assuming 

in formula (2-19) yn-  ■ 0, and m -  1, we obtain that the modulus of 

the strength of the electrostatic field on plane y  = 0 is 

I*!,.,-* !*-*.! 

Vie-M^-ÖP-öl 

Taking into account that the difference in potentials between 

electrodes 2 and 3 is equal to zero, we find 

f (.c—x,)4x 

1 (*-4)(4-*)(4-^) 
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whence 

i I 

{ __ X-dK  

i iv-«*»«-*)«-*)     K,w 

i.e., 

Using the expression found for field strength, we find, that 

the charge per unit of length of every conductor is 

-a, 

.  , . 2ß« P ^JirJg>. j« « 

-a,    . 

JL__ K (*') !■ K (A) —l-^- . «, 2ßt—- 

where *\.]/|-*P; ft',■••= K <-*?• 

The difference in potentials between the conductors considered 

is 

Vl r- V. - »', - Va - ß 
(• jxnrx)dx      -aflltj»)_ 

Honce we obtain the following expression for capacitance per unit 

of length of conductors considered: 

»'i-V,   L K(*)   K(*,) J 

The method of euooeeeive approximations  of boundary conditions 
allows reducing the solution of certain problems on calculation of 
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an electrostatic field with complex boundary conditions to the solution 

of a succession of simpler problems. No general method of creating 

this succession exists at the present time: selection of the initial 

approximation and method of construction of successive approximations 

depend upon the type of this or that concrete system. Let us limit 

ourselves therefore to illustration of the method of successive 

approximations in the example of the calculation of the capacitance 

of a flat circular ring [2-10]. 

The problem of determination of the capacitance of a flat 

circular ring under a strict posing requires the calculation of 

electrostatic field under compound boundary conditions, and the plane 

on which boundary conditions of various type are assigned has 2 

boundaries1 (v - a  and r - b).    Solution of such problems is very 

difficult» while the procedure for solving compound problems with 

one circular boundary of boundary conditions is developed to a con- 

siderably greater extent; therefore, we replace solution of the initial 

problem with solution of a succession of compound problems with one 

boundary of boundary conditions. 

In the first approximation we replace the ring considered 

(Pig. 2-9a) with a circular disc of radius r  » a  (Fig. 2-9b). Using 

the fact that the capacitance of any conductcr is greater than the 

capacitance of any part of it, we arrive at the inequality 

which gives a rough estimate of the upper and lower limits of the 

capacitance of the ring. 

To get a more accurate estimate we go to the second approximation, 

which we construct in the following manner: 

a) having assigned the potential of the disc (A)  and having 

calculated the field of the system in Fig. ?-9b, let us find the 

Subsequently we will call such llres boundaries of boundary 
conditions. 
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Fig. 2-9. To the creation of a system 
of successive approaches for calculation 
of capacitance of a plane circular ring: 
a) initial system - a ring with radii a 
and 2>; b) 1st approximation - circular 
disc with radius a\  c) 1st auxiliary 
system; d) 2nd approximation; e) 2nd 
auxiliary system; f) 3rd approximation. 

charge on the surface of the disc a,(r) and the potential in its 

plane V^ir)  at r > a; 

b) let us build an auxiliary system (Pig. 2-9c) in the form 

of an infinitely extended plane, in part of which r < b  charge 
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distribution is assigned o2(r) ■ -o,(r); and in the remaining part of 
which potential is equal to zero; 

c) having calculated the field of the system in Pig. 2-9c, 

let us find the charge density and distribution of potential on the 

boundary surface; 

d) superimposing the systems depicted in Pig. 2-9b and 2-9c, 

we obtain the system boundary conditions for which is shown in 

Pig. 2-9d. 

The built system differs from the initial system in that in it 

the ring z  * 0, a <  r < b  is in the field of positive charge 

distributed with density a2(r), but retains the same potential (A) 

as in the initial system. Hence it follows that the complete charge 

of the ring in the system of Pig. 2-9d is less than the true charge, 

and 

where $, is the complete charge of the surface a < r < b  in the 

system in Pig. 2-9b; Q_ is the complete charge of the surface 

a < r  < b  in the system in Pig. 2-9c 

The method of construction of the third approach is analogous to 

the one considered: it is based on solution of the auxiliary problem 

of finding the distribution of charge induced on a grounded flat 

disc of radius a  with negative charge distributed on part of plane 

r > a  with density o_(r) ■ -aAr)  (Pig. 2-9e), and on the subsequent 

superposition of the systems shown in Pig. 2-9d and 2-9e. 

In a new auxiliary system thus built (Fig. 2-9f) a ring with 

potential A  is located in the field of positive charge distributed 

over the surface r < b  with a density of a~(r).    The complete charge 

of tho rlnp; In this system is greater than in the second approxima- 

tion, but as before it is less than the true charge; therefore, 
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we obtain a more accurate inequality for the capacitance of the 

ring in the form 

—" I       *• S «aMW < Cjiacca. 

where Q~  is the complete charge on the surface b < r < a  in the 

system of Fig. 2-9e. 

All the subsequent approximations of even order are built in the 

same way as the second, and those of odd order are built in the same 

way as the third approximation. As a result we arrive at a con- 

vergent series of boundary conditions. In every subsequent approxi- 

mation the complete charge of the ring is increased, remaining less 

than the true value, while the potential of the ring remains constant; 

therefore, the capacitance of the ring is determined with ever greater 

accuracy. 

Detailed computations of the capacitance of the ring by the 

method of successive approximations are given in [2-10]. 
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PART TWO 

CALCULATION FORMULAS, TABLES AND GRAPHS 

1. The material of this part is divided into three chapters. 

In Chapter 3 the data are given on the capacitance of wires, in 

Chapter 4 data on the capacitance of flat plates, and in Chapter 5 

data on the capacitance of wires in the form of open and closed shells. 

In all these chapters it is assumed that the medium surrounding 

the conductors is either uniform in infinite, or is bounded by one 

flat impenetrable boundary. In the latter case capacitance is 

calculated by means of analysis of the auxiliary systems of conductors 

located in an infinite uniform medium and obtained by means of a 

single mirror reflection of the initial system (see § V-2). 

2. At the beginning of every chapter general remarks are given, 

in which the geometric forms of the conductors considered are briefly 

scanned, and the general characteristic of the data given on their 

capacitance is given. 

3. The material of each chapter is arranged in increasing order 

of the -lumber of conductors that form this or that system. 

One ought to take account of the fact that the system formed 

by the union of several conductors is considered one conductor; 

in this case the effect of the connecting conductors on the capacitance 

of a system is assumed to be negligible. 

4. For the majority of the systems of conductors considered 
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6 I 
I 

both accurate, and approximation formulas are given with indication 
of the limits of their applicability and accuracy. The latter is 
characterized by relative error 

where C and C„   Al.    are the accurate and approximation values of TOSH     npnö/1 ** 
capacitance, respectively. 

5. References to operations used in obtaining individual 
formulas, as a rule, are not given. However, for some typical 
systems the basic results obtained by various authors are briefly 
compared. 
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CHAPTER 3 

CAPACITANCE OF WIRES 

3-1. General Remarks 

1. In this chapter formulas are given for calculation of the 

capacitance of wires, i.e., of conductors the form of which satisfies 

the conditions shown In § V-2. In all cases when nothing is said 

to the contrary, it is assumed that the form of the section of wire 

is circular. 

2. In all the formulas below the distance between wires is 

understood to be the distance between their axis. 

3. All formulas given in this chapter are approximation formulas, 

and a majority of them are obtained by the method of mean potentials. 

4. The limits of applicability of the given approximation 

formulas depend upon the relationship of the sizes of a wire and of 

the form of its axis; In most cases accuracy of formulas is evaluated 

by solving numerical examples. 

i-2.    The Capacitance of Solitary Conductors Formed 
by Wires Arranged in Infinite Space 

1.     The rectilinear wire of finite   length  (Fig.   3-1). 

,„i.-o.ao»-itlZ2L—MIL (3-D 
'«4    («4)' 

[|*|<1,0% when   f/a>10]. 
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Fig. 3-1. A rectilinear wire 
of finite length. 

When greater inaccuracy is tolerable, the following less accurate 

formulas can also be used: 

fs       2wl ■ 

(3-3) 

Example 3-1. To determine the capacitance of a rectilinear 

wire in air I  ■ 0.5 m long and a  * 0.025 m in radius. 

To determine capacitance let us make use of formulas  (3-l)~(  -3). 
Taking into account that for air •-•,-—jj-ur8 p/m,   and using the 

formula (3-D, we find 

c.* **•*•* 
,BJW     0.307 —*wL—     M" 

0.035      I    0.025 J 

»JLIO-' 0.» _ IP-8      0.* 
36s 2,995-0,307-0,059 ^0,0614     "ST* *.»8 

- 10,810-" F-10.8   pF; 

At calculation from formula (3-2)  analogously we obtain 

c,«—i<r» 
'     36c 

0.5 

Ar*     °'8     I °-0g8      l/ll/0»028? 

TS- • TJ^T « 10.15.10-WF-10,15  pp. 
18      2,737 v 

j-'lnalJy, u^ing  formula (3-3) we find 

C. m £-. IO-9—M 10.3.10-» F . 10,3 PP • 
'     36» Im0-1 
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With respect to the result obtained using formula (3-1), the 

inaccuracy of calculation from formulas (3-2) and (3-3) in the case 

considered is respectively 6 and ^.6%. 

2.    A wire,  bent along  the aro of a oiraumfevenae   (Fig. 3-2). 

Pig. 3-2. Wire bent along the 
arc of a circumference. 

Ctcae- 2wl 

-?-*' 
(3-4) 

f|«|<2,0%  when fl/a> I0J, 

where 6 is the central angle of the arc (in radians); I  » QR    is the 

length of the wire; J is a parameter the numerical values of which 

are given in Table 3-1. 

Table 3-1. Value of parameter I, 
which enters formula (3-4). 

•>d«g i *deg *■ deg i ••deg 

0 0.0000 3u0 90 0,7529 270 
a 0.1052 353 95 0.7715 . 265 

10 0.1803 350 100 0.7887 260 
15 0.2439 345 105 0.8047 255 
20 0.3000 340 110 0.8195 250 
25 0.3306 335 1(5 0.8332 245 
30 0.3968 330 120 0,8458 240 
35 0.4393 325 125 0.8572 235 
40 0.4788 320 130 0,8676 230 
45 0.5151 315 135 0,8774 225 
50 0.5492 310 140 0,8852 220 
55 0.5809 305 145 0.8925 215 
60 0.6107 300 150 0.8988 210 
65 0,6385 295 155 0.9041 205 
70 0.6645 290 160 0.9083 200 
75 0.6889 283 165 0,9117 195 

- 80 0.7117 280 170 0,9141 190 
85 0.7330 275 175 0.9155 185 
90 0.7529 270 180 0.9160 180 
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3.     A wire in the form of a circular ring  (Pig. 3-3). 

Fig. 3-3. A wire in the form 
of a circular ring. 

C«—-~- (3_5) 
'■? 

r|8|<2,0!4,when «/«>10|. 

Example 3-2. To determine the capacitance of a circular ring 

and semiring in air and having a radius R ■ 0.1 m, the diameter of 
a section is 2 a  = 0.01 m - 0.01 * (•-•,--!-. i<r* p/m). 

Using formula (3-5) for the capacitance of the ring we obtain 

0,005 

To determine the capacitance of a semiring we preliminarily 

find from Table 3-1 the value of parameter I. When 6 ■ TT parameter 

I  * 0.916. Thus, for the capacitance of the semiring considered we 

have 

0.005   « 

The ratio of the found values of the capacitance a semiring and a 

ring is 0.541*, i.e., the capacitance of a semiring is somewhat 

greater than half of the capacitance of a ring of the same radius. 

With decrease in R/a  this difference is increased. 

4.     Two interconnected parallel  rectilinear wires  of finite 
length   (Fig. 3-1»). 
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Let us examine several cases: 

a) b  = 0 (Fig. 3-5), then 

where 

cw— *»•*• *»~ |a 

+^(fHR'-/(fl^-/(^#]- 
b) b -0; /, = /,»/; o.-o, «a 

C. 4«| 

,[4-Y.+(4)8J-[i+l^+(^p, 

where   if - -f- + -± - j/l + (-f)'- |/V(-f)\ 

(3-6) 

(3-7) 
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YA *i 
*; 

Pig« 3-1*. The gen- 
eral case of a soli- 
tary conductor, 
formed by the union 
of two parallel 
straight wires. 

Pig. 3-5. The 
conductor shown in 
Pig. 3-1*, when b  - 0. 

When 2d/Z » 1 

CaS»£ 
4rii 

(3-8) 
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V.'hen 2d/l « 1 

C. 4r.ti 

In — + In — - 0.614 
• d 

(3-9) 

c)   * = /, + 2fr,  a^t^^a  (?ig.   3-6) 

C=ü4KI 4 
», /iniL-_ot307} + /'       at{ln-J--0,307J + f 

where 

(3-10) 

[a+/,.+y*~+(:»+/,)•] [a+1,+VW<a+ /,)»] 

a+/1+^+(a+/j« 

»+'i+V'*+<2ft+W 

- K ?+(2A + A+ur-V*+w' 
d)    rf-0;  /,»/,-/;  0,-0,-a;  *«l + 2A(Pig.   3-7). 

Fig. 3-6. The conductor 
uhown In Fig. 3-4, when 
£ » ^ + 2h. 

I 
7* 

Fig. 3-7. Two joint 
Identical wires, arranged 
on one straight line. 

When h >  l/k 

C,=a£ fell 

iB±.+i„«±a. (3-11) 

5.  Two interconnected intereeoting- or croeeing rectilinear 
wiree of finite  length, 

a) General case (Fig. 3-8). 
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c. «nT-'i»-"J«nt 
(3-12) 

where 

wm f\t 4- ^M + f»—^n . 
U      4r.t(x,-*,)(?,— ft) * 

F» - *, In ly, - *„ cos <p + DJ + y„ In \x, - y¥ cos <p + DJ + 

+ £»««(-:t±^<«T)< 
D„ - K^ + lJ-Vf «»» + *•  p« 1,2; q- 1, 2. 

414.4*4« 4 Pig.   3-8.    Conductor formed by 
two intersejting or crossing 
rectilinear wires P,   and Pp are 
parallel planes passing through 
wires 1 and 2, respectively; 
P., is a plane perpendicular to 
P1 and P2; d  is the distance 

between planes P, and P~; <j> is 

the angle between wire 2 and 
the projection of wire 1 on 
plane P~  (or, what amounts to the 

same thing, between wire 1 and 
the projection of wire 2 on plane 
P1)j «1, x2, and i/1, y2  are the 

coordinates of the ends of each 
of the wires reckoned along the 
line of their location from 
points 0, and 0«, respectively. 
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b) Perpendicular wires of equal length are located in one plane: 
d ■ Oj  <f> ■  TT/Ü; a^ ■ Vl ■ A; «2 . «^ ■ y2 - y1 ■  Z  (Pig.   3-9) 

<v 4«tl 

(3-13) 

Pig.   3-9.    Two perpendicular 
lines. 

When h ■ 0 

<V fail 

"{•[^/^♦f-Z-ltf 
(3-1M 

6.     Several   (n)   interconnected identical parallel rectilinear 
wires. 

a) the wires are located in one plane at equal distance from 

one another (Pig. 3-10). 

Fig. 3-10.  A system of n 
identical interconnected 
parallel wires in one plane at 
equal distance from one another, 

When d/l  « 1 

C,-. 2KM* 

, An -L - 0.307) + lo -—+a 
(3-15) 
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where 

B ■ T S",n ,(m ~ '>' (" ~ m>,I* 
«-i 

3-2. 

The values of coefficient B  for n  = 2-12 are given in Table 

Table 3-2. Values of the parameter B  which 
enters formula (3-15). 

• l 1 « ■ • r a ' 1 » II II 

B 0 0,46 1.24 2.26 3.« 4.85 6,40 8,0« M 11,65 13.51 

b) The wires are located evenly on the surface of a circular 

cylinder (Fig. 3-11). 

Pig. 3-11. A system of n  identi- 
cal interconnected parallel wires 
arranged over the surface of a 
circular cylinder. 

C.~ feuif 

1„ i. + (n_ 1) In_L + l„ 2_„ _ ,„ fsin  « .iinii... tln(lzliil * a R • [2 2 2J 
a a 2K//I. (3-16) 

When n  = 2 this formula coincides with (3-9)> and when n  - 2-8 

11 le.udü to the formulas shown in Table 3-3« 

c) the wires are located on the parallel edges of a rectangular 

parallelepiped (Fig. 3-12). 

Fig. 3-12. Four identical 
rectilinear wires arranged on 
the parallel edges of a 
parallelepiped. 
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.Table  3-3.     Capacitance of conductor shown in 
Pig.   3-11 at various   /alues of n. 

.4 C&loulatlon 
system Capaaitano« 

1 
*H- 

<*-*\% 

V 

2« 
3 

2s 

C.« Set* 

l„ J_ + 2|o- 2,023 
• R 

Ctet 8*ll 

In — + 3 In — — 2.615 
• R 

C,et 
lOxti 

ln-L + 4lD 1 3,138 a R 

C.< 
12*tl 

In— + 5ln-—3,640      < 
0 Ä 

4 
C»a 16«tJ 

la 11 +7 la-1—4,64» 

When d > 5fc 

C0s*- 8**1 

In 
2M*a 

(3-17) 

Example 3-3. To calculate the capacitance of the conductor 

:-.liowri In Fig. 3-11, when Z « 2.0 m; 2 a - 0.04 m; /? - 0.5 m, at 

varlou:; value» of n. 
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Using the formulas given in Table 3-3, we directly find 

for n »  3 

*"      m.    fa":in 62•5•,0^",,?'■ 62-s Pp« 
0,02 0,6 

for      *-< 
C, a ——^M . 72.«. 10-» F - 72.8 PF. 

,nS + 3,n^f-2'6,S 
0.02 0,5 

for      »-ft 
Ci<* on ' ""ffi " 79.8.10-»? - 79.5 P* 

ln^+4lnf?--3.138 
0.02 0,6 

for     «-• 
C.»_ l*Üs£? -«WI0-»F-«W   pBi 

0,02 0,5 
for     «-• 

C,, 'fc'*'2-0 9I.IÖ-"F-W       PF. 
,BWL+7.Ioi5.~4^ 

0,02T 0,5 

Hence it is apparent that with increase in the number of wires 

from 3 to 6 the capacitance of the conductor being considered is 

increased 3**%,  and with increase from 4 to 6 only 15J. This 

evidences significant mutual effect of wires. 

7. Reatilinear wires  connected in  the form of a polygon. 

Approximation formulas for the calculation of capacitance of 

conductors in the form of polygons of various type are given in 

Table 3-4, and give an inaccuracy of not more than 10%. 

Example 3-4. Disregarding the effect of earth, to determine 

the capacitance of a frame antenna in the form of a square with 

side I  =» 10.0 m with a wire b mm in diameter. 

Using the formula of Table 3-4, we find that the capacitance 

of the antenna considered is 

c>a«. *-*«-,!0.q „ 022. nr'(p)« 220 pp. 
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Table 3-**. Formulas for calculation of capaci- 
tance of solitary conductors In the form of 
polygons formed by rectilinear wires.  

Su 

Al 

Form of 
e ire lit 

Calculation 
gya-tera. 

J.quilateral 
triangles 

Square 

Regular 
hexas>n 

Cs »\citane» 

C.« 6cil 

ÄD C.at 
Bztt 

In-   fl,9l 

C.« 
I2stl 

In 4-+2,178 

Isosceles 
triangl« 

• -40* 

Ri#vt 
■triangL« 

Co et 4itil 
l„-L- + 2,18 

0,787 

tn-^ + 2,31 
a 

C» a 4r.«l 

0.» 

0,433 

In-£- + 1.88 

+ o.s 
In -L + 1.59      ln-i-+'.» a a 

8.     Hires  oonneoted in  the  form of spatial bodies. 

a)  The wires  are  located on the edges  of a cube   (Pig.   3-13): 

C. 24sif 

lO-^-T«.» 
(3-18) 

b) Wires are located along the directrixes of a right circular 

cylinder and along four of the generatrixes, lying in two naturally 

perpendicular planes (Fig. 3-14). 
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u 

Pig. 3-13« Conductor 
formed by wires on edges 
of cube. 

Pig. 3-11». Conductor 
formed by the wires 
arranged along the direc- 
trix and four generatrixes 
of a right circular cylinder. 

When H/4R < 1 

C- 4r.«t (r.fl + H) 

c» 

2       a      Vw+AR* 
K+i(.-^+.) (3-19) 

where K Is a complete elliptical integral of the first kind (see 

Appendix 1) with modulus k 4Ä» 
4R»+H» 

3-3.  The Capacitance of Solitary Conductors t  Formed 
by Wires Arranged Near an Infinite Flat 

Impenetrable Boundary 

The formulas given in the present paragraph were obtained by 

the method of mirror reflection of the conductors being considered 

relative to a planar impenetrable boundary. Some of the auxiliary 

systems obtained in this way coincide with those considered in the 

previous paragraph. In these cases calculation of capacitance boils 

down to utilization of the formulas of appropriate sections § 3-2. 

The numerical examples given in the present paragraph concern basically 

the determination of the resistance of grounds on the basis of an 

analogy between conductivity and capacitance (see § V-4). 

1. Rectilinear wire  of finite   length, 

a) The wire is parallel to the boundary plane (Fig. 3-15): 

(3-20) 
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wnere C'0 is determined from formulas (3-7)-(3-9). 

tg   | ■■■ i 

^N 

Fig.   3-15.    Rectilinear wire of 
finite length parallel to a flat 
impenetrable boundary. 

b)  The wire is perpendicular to the boundary plane   (Pig.   3-16) 

(3-21) 

where CQ  when ft * 0 is determined from formulas (3-D-(3-3)» and 

when h ?  0 from the formula (3-11). 

Pig. 3-16. Rectilinear wire of 
finite length perpendicular to 
a flat impenetrable boundary. 

Example 3-5. To find the resistance R of horizontal and 

vertical grounds with radius a =  0.1 m and length I  - 1.0 m in 

ground with electrical conductivity y s 2.0*10  l/ß«m, arranged 

on depth: horizontal ground - d/2 * 1.0 m, vertical ground - h  * 0.5m 

(see Pigs. 3-15 and 3-16). 

Using the relation between R  and CQ  (see § V-4), we find for a 

horizontal ground [formulas (3-20) and (3-7)] 

71 



for a vertical ground [formulas (3-21) and (3-11)3 

"     T     fr      TP'0     «.MO-H     0,1^        20.5+1.0   J 

2.     A wire  in  the form of a airoular ring arranged in a plane 
parallel   to boundary   (Pig.   3-17)« 

Pig. 3-17. A wii^e In the form 
of a circular ring arranged in 
a plane parallel to an Impene- 
trable boundary. 

When h  « R 

C%, 
In (3-22) 

When h » R 

d« irtoR 

'       £ + *?■  * (3-23) 

3.     Two identical rectilinear wires perpendicular to a boundary 

plane  (Pig.   3-18). 

Pig.   3-18.    Two identical 
rectilinear wires perpendicular 
to an impenetrable boundary. 

C§«|. (3-24) 

where CQ  is determined from formulas (3-7)-(3-9). 
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H.     Several   (n)   identical rectilinear wires perpendicular  to  a 
boundary plane. 

d)  Wires are located in one plane at an equal distance from one 

another (Pig. 3-19): 

c-4 (3-2:) 

where CQ determined by formula (3-15). 

Pig. 3-19. n  identical wires 
perpendicular to an impenetrable 
boundary and arranged in one 
plane at an equal distance from 
one another. 

b) The wires are located uniformly on the surface of a 

circular cylinder (Pig. 3-20): 

C-3 (3-26) 

where CQ  is determined by formula (3-16). 

Fig. 3-20. n  identical wires 
perpendicular to an impenetrable 
boundary and arranged along the 
generatrix of a circular cylinder. 

c) The wires are located on the parallel edges of a parallelepiped 

(Fig. 3-21): 

(3-27) 
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Fig. 3-21. Pour Identical wires 
perpendicular to an impenetrable 
boundary and arranged along the 
edges of a parallelepiped. 

where CQ  is determined by formula (3-17) when d  « h/2  - h,. 

5.     Wires  connected in the form of a rectangle parallel to a 
boundary   (Pig.   3-22). 

Pig. 3-22. A conductor in the 
form of a rectangle parallel to 
an impenetrable boundary. 

Co- 
2r.tL 

In 
2oA 

(3-28) 

where L ■ 2  (^ +   l2),  and the values of the coefficient fe, depending 

on the ratio   h/l? are S*ven below: 

Mt        1.»    2'°   3>°     4*° 
* 3,81   6.42   8.17   10,4 

When l1 »  l2 m  i 

«V 9nL 

In 5.531»' 
M 

(3-29) 

where L »  kl. 

6.     Horizontal  rectangular grating parallel   to a boundary 

(Fig.   3-23). 

r 2ctL 
C'   TIT—' 

2ah 

(3-30) 

71 



Pig. 3-23.  A conductor in the 
form of a rectangle parallel to 
an impenetrable boundary. 

where L is the total length of all conductors that form a grating; 

D is a coefficient depending on the ratio of the dimensions of the 

grating and the number of its cells. 

The values of the coefficient D  for some types of rectangular 

lattices are given in Table 3-5« 

Table 3-5. Values of the coefficient D 
which enters formula (3-30). 

No. 
in 
order '»r 

hu* 

0t~ N*^. 
I» 

* 
10 3.0 4J6 

1.71 

3.67 

4.95 

4.33 

8.S5 

1.76 

3.41 

S.I6 

4.43 

8.94 

1.86 

3.31 

5.44 

4.73 

9,40 

2.10 

3.29 

6,00 

5.04 

10.30 

1 
** 

2,34 

1. 
- P*- 

2 
j 

3.35 

1. 

1* 
3 

3H» 

6,52 

, 
j 

h -H 1 
4 

• 

I 

.5,61 

'  6 

LjJ kj LjJ 
11.11 

JS 
1 

HFJ •1 •H 
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Example 3-6. To find the resistance of a horizontal ground in 

the form of a rectangular grating of tubes with k 2.0 x 1.0 m cells 

with a diameter of tubes of 0.02 m. The grating is placed into 

ground with .-"! metrical conductivity of y 
h  = 2.0 m. 

10~2-^- to a depth of 
n«m 

Using an analogy between conductivity and capacitance, let us 
use for calculation the formula (3-30). 

The total length of the conductors of the ground being considered 

is L  = 3 (l±  + l2)  = 3 (4.0 + 2.0) = 18.0 m. 

The coefficient D  which enters (3-30) is determined according 

to an assigned ratio \/^2 ~  2,° from T&ble 3-6, with the aid of 
which we find that D  - 5.M. 

Table 3-6. 

>1 
The values of coeffi- 

cient D., t  depending on l/d. 

1 l 
' 

1 
4 0. T o. T IK 

o.o 0.0 0.90 0.364 0.45 0.676 
10 0.042 0.85 0,379 0,40 0,617 
5 0.082 0.80 0,396 0.35 0.664 
2.5 0.157 0,75 0,454 0.30 0,721 
2.0 0,191 0.70 0,435 0.25 0,790 
1.25 0.283 0,65 0,457 0.20 0.874 
1.11 0.310 0,60 0,482 0.15 0,990 
1.00 0,336 0.55 0,510 0.10 •1,155 
0.95 0.350 0.50 0,541 0,05 1,445 

Thus, 

«-4—4 
In 

18* 
20,01-2,0 

+ 5.44 

2>-18,0.10"* 
12.7 

'/. Flat  n-ray a tare parallel   to a boundary,1   when h/l   <   1 

(I'igs. 3-21 thru 3-28). 

a) 2-ray star (T-shaped wire) (Fig. 3-24): 
4*tl       _ c. 

,n^. + ,BJ.-.0.2373+0.2146A+?i1035^— 0.0494-£    (3.31) 

^-ray star will Le the name given the conductor formed by n 
rectilinear wires intersecting at one point. 
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f|8|<l,0H*t*n A//<0,81. 

Pig.   3-24.    A r-shaped 
wire, parallel to an 
impenetrable boundary. 

Fig.   3-25.  A three-ray 
star, parallel to an 
impenetrable boundary. 

Fig. 3-26. Pour-ray star 
parallel to impenetrable 
boundary. 

Fig. 3-27. Six-ray star 
parallel to impenetrable 
boundary. 

Fig.   3-28.    Eight-ray star 
parallel to impenetrable 
boundary. 
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Furthermore, a less accurate formula can be used 

•~"^1«F' (3"32) 
ah 

where I. — 21. |«| < 10H  when hll < 0.8. 

b)   3-ray star (Fig.   3-25): 

C,=* £4  (3-33) 
JL + 1,071-0.209 —+ 0.238^ 
*       * I I1 

(|3|<l,0%«tMn A//<0,8J 

In —-r In— + 1.071 -0.209-A- + 0.238•£.-0.054-£• 
■ *       • I I» J» 

or 
Shut 

i 

where  t - 3/. |l| < 10% when hll < 0,8. 

c)  4-ray star (Fig.   3-26): 

• 
m^£ (3-34) 

a-k 

c«a"—ä ä : £ » ST (3-35) 
lo-=- + In —+ 2.912-1.071-^+0.645^—0.1«^- 

a k I <• •     I» 

||o|<l,0*"h.n  A//<0,8J 

or 

fc.L C#«* 
,„2Ä ' • (3-36) 

ok 

where L - 4/, |A| < 10%' when A/I < 0,a' 

d)   6-ray star (Fig.   3-27): 

CI2MI 

•*—5 Ü Ä w XT (3-37) 
la -2. + in -£L + «.851 - 3.128 -*- + I.75S -£ - 0.490 •£- 

• k t P r 

118|<I.OH »n«*A//<031 
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or 

C.< 

where L - 6/. |»|< 10S when Ml < 0.8. 

e)   8-ray star  (Fig.   3-28): 

la 19.2L» * (3-38) 

<V I6nl (3-39) 
ln A + |0 J. + 10,98 - 5,614-+ !>•»■?—M7 ~- 

l|8|< 1,054 «hen   A/I < 031. 

3-1. Capacitor Capacitance of Systems of Wires 

In the present paragraph formulas are given for the calculation 

of capacitance between two conductors, each of which is formed either 

by a single wire, or by the combination of several wires.1 

1. Two parallel wires  of circular aeotion  (Pig. 3-29) 

a) b  = 0: 

where 
«u + «*+2«it (3-^0) 

Pig. 3-29.  A system of two 
rectilinear wires (general 
case). 

xThe basis of the majority of the data of the present and 
following paragraphs is the results of work [3-1]. 
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— äj <A"b 7-+1Arsh i- (t -') ** 4*+ 
+t+i/(fr+(t-')'-/(fF- 

b)    6 » 0, lt = I, « f, at ^ a, - <n 

c*. ctl 

where coefficient D1  is determined by expressions: 

at  l/d > 1 

,,   *-l/WfH,y*/'+(fr: 
' 2.303 .   T * S 

at   Z/d 

1 2,303 * I 

(3-41) 

The values of the coefficient D,  depending on Table 3-6. 

At  e »  e„ 

C(pP) 27,84/ 

In -^—: 2,303 £>, 

C^   al * a2 = a*  b "  ll +  2m   ^Fig#   3"30): 

where 

•u + «jg—2«tj 

^w(»-[4+-/«+(*r]+f-/-+(ifl» 

*"'•'• |        Ai + m + V«lt+(Ä1 + m)» 

+ Vn *» + *« + Vr<<'-Kfti + *iy  | 

(3-4la) 

(3-42) 
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+ /«1n- (im + Vffi ■<■ 4m« )* 

[ft, H m + V> f (*i +»»)«] [*t + m f 1'rfU (A« f m)«] 

+ 1 / d» + (A, + m>" -J- Kd»+(A,4-mp - 

- Kd*+(A, +A.J»- K?+W). 

d)    «1-0. /,=»/,-/. a.-o.-a. 6-/ +2w    (Pig.   3-3D 

C«  j  , 
In-—-2,3030, 

(3-*3) 

Pig. 3-30. Two parallel wire 
at b  «■ I-,  + 2m. 

where coefficient Dp depends upon the ratio m/£ and is determined by 
formulas: 

at mil < I 

at «// > I 

D, - 0.434 + f-lg(7L)+ (l + f-)»g(» + f-)- 

D. = 0..33 + ^. + i.)te(l+i)-^(. + ir).g(. + X). 

3». 

Pig. 3-31. Two identical wires 
arranged on one straight line. 

The  values  of coefficient Z?2  are given ln Table   3-7. 
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Table 3-7. Values of coefficient 
Dot  depending on m/l. 

m 
1 Ob 

* 
T o. T o. 

0,02 0.403 0.30 0.280 1.0 0.207 
0.04 0,384 0,40 0,261 Ml 0.2O2 
0.06 0.369 0.50 0,247 1.28 0.198 
0.06 0.356 0.60 0,236 2.0 0.177 
0.10 0.348 0.70 0,227 2.8 0.170 
0.1S 0.323 0,80 0,219 8.0 0.183 
0.20 0.308 0,90 0.2128 10.0 0.144 
0.28 0,291 

When e 

C(pf)- 27.84* 

In _L „ 2,303 D, (3-*3a) 

e) b » 0,  l^ -  l2 »  I » d-(a plane-parallel system, Pig.   3-32) 

Pig. 3-32. Two parallel 
infinitely long wires of 
different diameter. 

Capacitance per unit of length of system is determined by 
formulas:  at random a and d 

at at-at~a 

at 04 = «*<-<!. <f>« 

c — **• . 
Arch 

2>A 

G- 
Areb 

4   ' 

ct< 
-4- 

<3-M> 

(3-15) 

(3-16) 

Example 3-7. To determine capacitance per unit of length of 

a two-wire located in air and consisting of wires 2a    ■ 1 mm in 

diameter and d  » 10 cm apart. 
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Since in this case d/a  ■ 50 >> 1, it is possible to use formula 
(3-46), with the aid of which we find (when e ■ eQ) 

C. m -2t- . "I<r* . 7.1 • I<r,,F/» - 7,1 PF/»- 1  , 4   SfelnSO 
In — 

2.  Two infinitely   long wires  of rectangular eeotion. 

Capacitance per unit of length of syste.ii is determined by the 

formulas: 

a) iu  general (Pig. 3-33) 

Cj£* 

*[»~(£i+^)] 
I|8[<2,0% whenv> 10], 

(3-47) 

or 

where 

C«~l^if (3-^8) 
ll*|<5,0Kwhen»>.7j, 

" «• *Mi5-l.78r,-l ' 

»■»< 

b)  in the case of a symmetric system (Fig.   3-34) a,   * 2>,  ■ a2 

2>2 - a; 

C, ** 

* ,n(*~7=r) (3-*9) 

where  v-1.6954-   ar*d 

or 

|*|<3,0S when   »>7, <!>4a. 

C,- .. 1.7M (3-50) 

[\*\<*fl%     «he« 
/>10, <f>6a|. 
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Pig. 3-33. Two infinitely long 
rectilinear parallel wires of 
rectangular section. 

Fig. 3-3^. Two identical in- 
finitely long rectilinear 
parallel wires of square section. 

Example 3-8. To find capacitance per unit of length of a 

t,wo-wire line formed by wires of square section with side a  ■ 1 cm, 
arranged in air at a distance of d  ■ 5 cm from one another. 

At the assigned dimensions of a line parameter v, entering 

formula (3-49), *-1.695-|--M 

Then, using formula (3-^9), we find that when e ■ eQ 

C, » - 10rt        ,   — - 13.25-Urn?/m - 13,25 pP/m. 

I 8.48-1 J 

If we make use of the simplified formula (3-50), then 

«-10T* 

36=-(1.72-5) 
- 12.9.10-" P/m- I2.i pF/m, 

I.e., the relative difference in the results of calculations from 

the formulas (3-^9) and (3-50) for the given value of v is 3.6*. 

3. Two intersecting or crossing  rectilinear wires  of finite 
length: 

a) the general case (Pig. 3-35): 

8M 



where 
«U + «M — *■«* (3-51) 

«u 

2=. 

,+ (Mt-lhH 

F,, -*plnlVf—*,cos? + D„) + y,lnlx,-y9 cos? -f Dw! + 

^•^(A±¥£a-"f)- 

'p-1,2; 9-1,2; 

b) perpendicular wires of equal length are located in one plane; 
X 

3 0; ?--=•; *i-y,-.A; jrt-jr,-yf- y±  - 1 (Pig. 3-36): 

«I 

ta[4-+/^]4V'-(f)'-* 
A,-AIn_ Mi*    , 

(3-52) 

if-i M-  *«»+* 
V  i./  * + V*» + (* + V 

***.*!*.* Pig. 3-35. Two intersecting wires 
1 and 2. P, and P„ are parallel 

planes passing through wires 1 and 
2, respectively; P- is a plane 

perpendicular to P, and Pp.  d is 

the distance between planes P, and 

P2; ♦ is the angle between wire 2 
and the projection cf wire 1 on 
plane P^  (or between wire 1 and 

the projection of wire 2 on plane 

■p arg and #i> #2 are the Px).  * 

coordinates of the ends of wires 
reckoned along the line of their 
location from points 0, and Op, 

respectively. 
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t=rp 

\1 
29 

Fig. 3-36. Two straight wires 
of finite length arranged at 
right angles. 

When — >1; —>la simpler formula can also be used 

Jn-i— urn 
(3-53) 

*. Two identical wires in the form of a circular ring arranged 
symmetrically  in parallel planes   (Pig. 3-37). 

Fig. 3-37. Two identical cir- 
cular rings lying in parallel 
planes. 

**— *, 
4s*«Ä 

(3-5*) 

where K is the complete elliptic integral of kind I with modulus 

fe — g;  ■ (see Appendix 1). 

Example 3-9. To determine the capacitance between the conductors 

shown in Fig. 3-37, considering that they are located in air*, the 

radius of every ring is equal to 5 cm, the distance between them is 

10 cm, and the diameter of the wire is 0.1 cm. 

Calculating the modulus of an elliptic integral, we find that 

»-l/ * -l/ * -ft*». 

Then from the tables of elliptic integrals we find that K ■ 1.85*. 
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Substituting this value into formula (3-5*0, we find that the 

capacitance between the conductors considered when e - eQ is 

c« 4c,.IO-•.5.|(r, 

^('"-w-*708-1-854) 
l,04.1<rw P-1,04 PP. 

5. An infinitely  long straight wire and the ooaxial airoular 
ring enveloping it  (Fig. 3-38). 

Pig. 3-38. A circular ring and 
rectilinear wire coaxial with it. 

Seel 

2« (3-55) 

6. A straight wire of finite   length passing  through circular 
out of the plane  (Pig. 3-39). 

Pig. 3-39. A straight wire of 
finite length passing through 
a circular cut in conducting 
plane. 

When a « R  and 2R  « I 

when 2R «  I 

. r »* Y (3-56) 

4K*« 

In **  ' 
(3-57) 
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Example 3-10. To determine the capacitance between a wire 

2 mm in diameter and ko urn  long and the metal panel of a voltmeter, 

if the wire passes through an opening in the panel 10 mm in diameter. 

Disregard the influence of insulation. 

Using formula (3-56), when e ■ eQ we find 

c - *Llfr*'*'ir%  - »,05-trr» P - 1,05 PP. 
„ , 2405 

40+10 

Prom a less accurate formula (3-57) we have 

-.    fc.ur*.«• 10-* ft„ „. C = • « 0,95 P". 
36s In 25 

Comparison of these results chows when 1/2R - k  formula (3-57) 

gives significant error (=10#). 

When 7/2Ä > 10 the difference in quantities calculated from 

formulas (3-56) and (3-57) does not exceed 6.5Z, when 1/2R >  20-0.7?. 

7. 2 n identical wiree  in two parallel planes,  in each of whieh 
the wiree  are  interconnected  (Pig. 3-^0). 

*, 

Fig. 3-40.  2 n  wires arranged 
in two parallel planes. 

-Ärf£v*N-mp£/w>-A£^..«.<:    s*vx£c 

When  (n - 1) b <  I 

C=* SICtf 

In I- + (« -1) In 4— 2.303« (Ot + B„) (3-58) 

where ü, is found from Table 3-6, and coefficient B    is determined 
l n 

by the formula 

a-«^li8(«-i)+2igx 

X(n-2)4 3tg(/i~3)+... 
... +(n^-2)lg2l. 
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The values of coefficient B    are given in Table 3-8. n 

Table 3-8. Values of the coefficient 
Bn  entering formuls (3-58), depending 

on the number of wires. 

• *. a *. • »• ■ »- 

3 0,0 8 0,34? 14 0,550 20 0,688 
3 0,087 9 0,388 IS 0,576 30 0,847 
4 0.135 10 0,425 16 0,601 40 0,970 
5 0.19? II 0.460 17 0.625 50 1,063 
6 0.252 12 0,492 18 0,647 100 1.367 
r 0,302 13 0,522 19 0.668 

When e 

Civ?). 
27,84/11 

In A + (a -1) In 4— 2,303 (O, + B„) n (3-58a) 

8. 2 n identical rectilinear wires  of finite   length arranged 
in one plane and connected in accordance with  Fig.   3-41. 

Pig. 3-41. 2 n identical recti- 
linear wires of finite length 
arranged in one plane. 

When (n-1) d < m 

nr.tl 

In~ + (»-»)I"-r-2.3C3"<0» + *«> ■ a       • 

(3-59) 

where D2  is determined from Table 3-7, and B    from Table 3-8. 

When c ■ e, 

C(pp). 27.84 «I 
I | • 

In— r(«-l)ln n{D, j fl«) 
• ■ 

(3-59a) 

89 



9. Conductors  formed by  the  union  of infinitely   long parallel 
wtres. 

a) Three wires In one plane, the extreme of which are united 

(Fig. 3-42), 

C, 2ct 

In mi (3-60) 

Fig. 3-^2. Three infinitely long 
wires lying in one plane. 

b) 2 n  wires of alternating polarity lying in one plane 

(Fig. 3-43). 

Ct=SL 
2-wi 

In i : 
«a (3-61) 

c) 2 n wires of alternating polarity arranged evenly on the 

surface of a circular cylinder (Fig. 3-44). 

Fig. 3-43.  2 n  loaded 
wires of alternating 
polarity lying in one 
plane. 

Fig. 3-44. n  charged wires 
of alternating polarity 
lying on the surface of cir- 
cular cylinder. 
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When 0.4 < a < O.65 and o«-£* 
,        Una 

where « — -^-. 

(3-62) 

where ^9^1^?. 
• (I !■ I .Mi) 

When a < 0.4 

M 

2 In 
2/? 
na (3-63) 

10. Various  combinations  of infinitely   long wires  and plates 
(■planes). 

vhe formulas for determining the capacitance of the systems are 

given in Table 3-9. 

11. An infinitely   long wire and two butting planes   (Pig. 3-45) 

Fig. 3-45- An infinitely long wire 
in a sector. 

When 6 < ir (Fig. 3-45a) 

Sic« 

'»[-^iMf-Hfr] 
(3-64) 

When 6 > ir (Pig. 3-45b) 

2» 

»W\^U±i 
(3-65) 
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Table 3-9.  Formula for determining capacitance between an infinitely 
long wire and a plate or plane. 

a» 
••a Name of system Calculated model Calculation formula Note 

Linear wire 
over half- 

plane 

Linear wire 
over a plate 

Linear wire 
over plane 
with cut 

#r l« 

c 

/ i«\ 

I « 

liiere -W 
Ct< 2*. 

4Äili»Y 
lo 

""'■f^H' 
where 

• -•rctg-jp 

C|. 
fct 

-WH' 
where 

■ - arctg — 
A 

when «<Ä 

when « < R, 

when «cd. 

when «<4 

92 



Table 3-9 continued. 

H 
5*d 

■a Name of systed 

Linear wire 
over p3*ne 
with out 

Linear wire 
between two 
planes 

System of 
linear wire 
between two 
planes 

Calculated model 

**\ 

M^?- 

Calculation formula 

C,< 2*«d 

V7=iu{s.+ l/^fZ]- 

2M 

la- 

2M 

«,. 2s  

where *■ \ •      ■ /       J 
••— «heta- function 
n — the number of wires for which 

capaeitanee is determined 

Ci et ' 

*—•*,-27u,Ur) 

Note 

"hen a<4 

when a<4 

«*■«■•<* 

I when _£. < o,6 
# 

k-bfl 

when A - — 
2 

System of 
linear wire 
and    semi- 
infinite 

.plates evenly 
arranged 
along the 
radii 

fym 
«a 

K*)f 
whena<r« 
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When 3 ■  TT/2;  $ =  ir/4  (Fig.   3-45c) 

C, 
In (Ml A) (3-66) 

Example 3-11. To determine capacitance per unit of length 

between a linear wire and a plane, in the cut of which it is located. 

The diameter of the wire is 2 a  ■ 2 mm, and the width of the cut is 
2d    =10 mm. 

The sought capacitance is determined from the formulas of 

paragraph 4 of Table 3-9. 

From the first formula when e = e,  we obtain 

2r..S-l(r* 

afe-l's-iin [5+yas-i] 

From the second 

= 24.7- IQ-" F/m - 24,7   pP/m 

C, =* ^l"*"* = 24.2- l(Tw p/"> - 24,2  pF/m. 
'      36= In 10 

As it appears, even when a/d  = 0.2 the difference in determining 

capacitance from the given formulas does not exceed 2.555. 

12. An  infinitely   long wire  in  the  center of a shell of square 
section   (Fig. 3-46). 

■rv 
*«'*• 

2c 

Fig.   3-^6.    An infinitely long 
wire inside a shell of square 
section. 

Ct 
2™ 

In ['.<»-=-] (3-67) 

Example 3-12. In the center of a copper tube of square section 

with side a  ■ 20 mm, there is a linear conductor 2 mm in radius. 
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To determine the mutual inductance of a wire and tube at high 

frequency (per unit of length). 

Using formulas § V-4, we find that 

«>8V 

The capacitance of the system considered is determined by 

formula (3-67), therefore, 

Ll . -g_,„ [,,<»,£-] „ ±£L .|»fl.M^-l - 4,7610-' H/m 

13. System of touching infinitely   long wires  arranged on a 
circumference,   and the shell of circular section eveloping  it 

(Pig. 3-47). 

Pig. 3-47. System of touching 
infinitely long wires arranged 
along the circumference inside 
a shell of circular section. 

C,«. &• 

In 2* 
tr + a 

(3-68) 

14. System of touching infinitely   long wires  arranged on a 
circumference,   and circular shell  inside it  (Pig. 3-48). 

Fig. 3-48. System of touching 
infinitely long wires arranged 
along the circumference outside 
a shell of circular section. 
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In^S- (3-69) 

3-5.  Capacitance Between Systems of Wires 
and Infinite Conducting Plane 

The formulas given In this paragraph were obtained by the method 

of mirror reflection of conductors considered relative to a flat 

conducting boundary.  Some of the auxiliary systems thus obtained 

coincide with those considered in the preceding paragraph.  In these 

cases the calculation of capacitance between conductors and conducting 

plane boils down to the use of formulas of appropriate sections 

§ 3-H.    The numerical illustrations given in this paragraph mainly 
concern determination of the capacitance of antennas in air 

1. Rectilinear wires parallel  to a boundary plane and eaoh 
other. 

a) A wire of finite length (Fig. 3-^9): 

C = 2C'. -V.  (3-70) 

where Cx   is determined from formulas (3-^1) and (3-^la) when d  ■ 2ft. 

I .    . Pig. 3-49• A striaght wire of 
^jr     i -f finite length parallel to a 

conducting plane. 

Example 3-13. To determine the capacitance between grounds and 
a horizontal wire 30 m long and 6 mm in diameter arranged parallel 
to the surface of the earth at an altitude of 15 m. 

d      2ft  30 
In this case the quantity 7*= ~ " "äf "'• At this value of d/l 

the quantity D^  in Table 3-6 is equal to 0.336. 
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With the aid of formulas (3-70) and (3-**la) we find 

i i 

c* 27.84.30 
30 

fn —2.303-0.338 
0,003 • 

198 pF. 

b)  An infinitely  long wire  (Fig.   3-50): 

c,=,2c;. (3-7D 

where C«  is determined from formulas C-^5)  and (3-^6)  when d  - 2h. 

<& 

vrwrmsrm* 

Fig. 3-50. An infinitely long 
straight wire of circular section 
parallel to a conducting plane. 

c) Infinitely long wire of square section (Fig. 3-51): 

C, »2C|, (3-72) 

where C«  is determined from formulas (3-49), (3-50) when d  = 2h. 

«r#>r®r#W4T 

Fig. 3-51. An infinitely long 
straight wire of square cross 
section parallel to a conducting 
plane. 

d) n  identical parallel wires of finite length lying in a plane 

parallel to the boundary plane (Fig. 3-52): 

C-2C. (3-73) 

where c    ia determined from formulas (3-58) and (3-58a) when d  - 2h. 

97 



Pig. 3-5". n  infinitely long 
rectilinear wires lying in a 
plan«* parallel to the boundary 
plane. 

V»1 »T wT «p T t»T wT «kT*»T 

Example 3-14. To determine the capacitance to the ground of 

a horizontal antenna placed at an altitude of ft = 15 m and consisting 

of 6 parallel wires I  ■ 30 m long and 6 mm in diameter if the 

distance between the wires is b  ■ 0.6 m. 

In the case considered 7*~7"™1' At this value of d/l  the 

coefficient in Table 3-6 is 0, ■ 0.336. The coefficient B    in n 
Table 3-8 when n  * 6 is equal to 0.252. Therefore, using formulas 

(3-73) and (3-58a), we find that 

/, 27,84-30-.« 

In 4~ + 5 In -Ü- - 2.303 (0.336 + 0,252)-« 
0.4)03     0.6 

-488 Dp. 

e) n  identical wires of finite length parallel to the boundary 

plane (Fig. 3-53). 

T<&T*T»toW<»!<M 

Pig. 3-53. n  identical recti- 
linear wires of finite length 
parallel to a boundary plane. 

If the distance between any wires d(v  ■ 1, 2, . . ., n - 1) is 

significantly shorter than their mean distance from a boundary 

(<i << ft), then v 

2*«n{ 

2.303F,' (3-74) 

where 
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F, = Ig -?- + ,Vl(lg -^- + 0.434 ±}-nDu 

and 0,  is determined from Table  3-6 when d « 2k, 

When e ■  e. 

C(pF)~?i!£5L 
(3-75) 

When the wires are located on the surface of a circular cylinder 

(Pig. 3-54), 

<l, - 2/?sfn' -J-fr - 1, 2, ..., rt— 1), 

where n  is the number of wires. 

Fig. 3-51*. « identical wires 
parallel to a boundary plane 
and arranged on the surface of 
a circular cylinder. 

WtotelkUUU'fM 

Example 3-15. To determine the capacitance between grounds and 

a horizontal antenna consisting of 6 wires 30 m long and 6 mm in 

diameter arranged over the surface of circular cylinder 2 R  - 1.5 m 

in diameter, the axis of which is 15 m from the surface of the 

oarth. 

The distance between the wires which enter a system are equal 

to 

*,=»o.75 in.<f, = rf4- JL2-Ä-I,» m; «»,-.1,5 m. 
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The coefficient D,   in Table 3-6 when 4- —- - —- -' is equal 
A 1/30 

to 0.336, and nü1 =  6*0.336 »  2.016.     The  coefficient which enters 

formula  (3-7:5)   Is  F± =  4.0 + 2   (1.602  + 0.011)  +  2  (1.364 4- 0.018)  + 
+   (1.301  +  0.02V.) - 2.016 - 0.297. 

Using  formula  (3-75), we  find that 

c      24.16-30«   „ 

2. Rectilinear wires  of infinte   length perpendicular to 

boundary  plane. 

a) One wire (Fig. 3-55): 

C«2C. (3-76) 

where C    is determined from formulas (3-43) and (3-43a) when m  * h. 

Pig. 3-55.  Straight wire of 
finite length perpendicular to 
a plane. 

TaTFxSflgTisSr 

Example 3-l6. To determine the capacitance to the ground of 

a vertical I -  12 m long and 6 mm in diameter, the lower end of 
which is at a distance of 3 m from the surface of the earth. 

In this case m/l  * 0.25, therefore, the value of 0~ in Table 3-7 
is equal to 0.291.  Using then formulas (3-76) and (3-43a), we find 

c» 2-27.84-12 
8.28-2.303-0.291     pF. 

b) n  Identical wires lying in one plane (Fig. 3-56) 

C-2C. (3-77) 
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where C    is determined from formulas (3-59), (3-59a) when m  » h 

4       4 

« 

Pig. 3-56. n identical wires 
perpendicular to a boundary and 
lying in one plane. 

«»V4T»T«T*T»V 4>T»T#T 

Example 3-17.  To determine the capacitance between grounds 

and vertical antenna formed by 6 rectilinear wires I  ■ 12 m and 
6 mm in diameter, if the distance between neighboring wires is 

d  ■ 0.6 m, and the distance of the lower end of each wire up to 
the ground is h  ■ 3.0 m. 

Using Tables 3-7 and 3-8s we find that at assigned dimensions 

and number of wires of the system D~  ■ 0.291, but S = 0.252. 

Using then formulas (3-77) and (3-59a), we find that 

2-27,84-12-6 
8.28 + 5-2.995 - 2,303 (0,291 + 0,252) 

258 PP. 

c) n  identical wires arranged on the surface of a circular 

cylinder (Pig. 3-57): 

2**nl 
!2.303Fa ' 

where 

(3-78) 

r-*-i 

f,-i«4-+§(,«i+°'434t)~n[>- 
d,-2Ät1nr-jj-(r= I, *». . .. it-I), 

and A,, is found from Table 3-7. 
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2K 

111 
u 

r- 
t--> 

w 

Tdr#T<»y<&*»r&T 

Fig. 3-57. n identical wires 
perpendicular to the boundary 
and arranged over the surface 
of a circular cylinder. 

When  e  =  e 0 
n 24,t6«l C(pF)=*—'-— 

(3-78a) 

3.     A wire   L.n  the form uf a  circular ring parallel  to a boundary 

(Fig.   3-58): 

c-ar. (3-79) 

where c%  determined from formula (3-54). 

Pig. 3-58. A circular ring 
lying in a plane parallel to 
the flat surface of a con- 
ducting medium. 

W*&T*T*T#T*T 

4.     f-shaped wires   lying  in planes perpendicular  to a boundary, 

a)  One wire   (Fig.   3-59) 

CÄ 
2«tfft+.l«) 

^;7Jln^^-a.303O1] + /-A^(In-5--2.303Os)+ (3_80) 
I 2,3030, 

where coefficient £, is determined from Table 3-6 at d  ■ 2(h  + Z,), 

I m  I   -   coefficient £>- from Table 3-7 at m  - h,   I  - l->,  and 

coefficient D^  from Table 3-10. 
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■a 

Fig. 3-59.  T-shaped wire 
arranged in a plane perpendi- 
cular to a boundary. 

?« 

WTmWST&TWr 

Table 3-10.  The values of the coefficient 
D?  which enters formula (3-80), when l2^l -  ■*• 

*, »ft Ijk 

i, O   1   M 
i 

0.4    j   M 0.t IJO 0.1 04 0.4 0J 0 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0,7 
0,8 
0.9 
1.0 

0 
0.130 
0,169 
0,222 
0,241 
0,230 
0,254 
0,254 
0.252 
0,248 
0,243 

0 
0.137 
0.200 
0.237 
0.259 
0.271 
0.277 
0.279 
0.278 
0.275 
0,271 

0 
0.141 
0,207 
0.247 
0.271 
0.285 
0.292 
0,295 
0,295 
0.293 
0.290 

0 
0,144 
0,213 
0,254 
0,279 
0,295 
0,303 
0,306 
0,307 
0.306 
0,303 

0 
0,146 
0,216 
0,260 
0,285 
0,302 
0.310 
0.314 
0,316 
0,315 
0,313 

0 
0,147 
0.21C 
0.265 
0.290 
0.307 
0.317 
0.322 
0,324 
0,323 
0.321 

0 
0,147 
0,221 
0,269 
0,295 
0,312 
0,323 
0,329 
0.331 
0,330 
0,329 

0 
0.150 
0,224 
0,272 
0,300 
0,318 
0,330 
0.336 
0.340 
0.339 
0.338 

0 
0.153 
0,228 
0,275 
0,306 
0,325 
0,338 
0.346 
0,350 
0,350 
0,350 

0 
0,155 
0,232 
0,282 
0.314 
0,335 
0.349 
0.357 
0.362 
0,364 
0,365 

(i   ■ 
0.159 
0.239 
0.291 
0.325 
0,348 
0.363 
0.373 
0.379 
0.382 
0.383 

when "j//| > 1 

1, »ft Ijk 

h 0 0.2 0,4 M 0.8 1.0 0.1 0* 0.4 M 0 

0 
o.l 
0,2 
0,3 
0.4 
0,5 
0,6 
0,7 
0,8 
0.9 
1.» 

0 
0,055 
0,099 
0,135 
0,164 
0,1*6 
0.2G4 
0,218 
0,22» 
0.237 
0.213 

0 
0.064 
0.116 
0,157 
0.189 
0.214 
0.233 
0.247 
0,258 
0,265 
0,271 

0 
0.072 
0.129 
0.173 
0.207 
0,233 
0,253 
0.267 
0.278 
0,285 
0,290 

0 
0,078 
1,137 
0.184 
0,222 
0,248 
0.267 
0,282 
0.292 
0,298 
0,303 

0 
0,083 
0,146 
0,195 
0.233 
0,260 
0,278 
0,293 
0,302 
0,308 
0,313 

0 
0,088 
0,155 
0,206 
0,243 
0,269 
0,286 
0.302 
0.31! 
0.317 
0,321 

0 
0,093 
0,165 
0,214 
0,252 
0,278 
0.297 
0,311 
0,320 
0.326 
0.329 

0 
0.097 
0,174 
0.226 
0.263 
0.290 
0,309 
0.322 
0,330 
0.336 
0,338 

0 
0,106 
0,187 
0,241 
0.276 
0.305 
0,323 
0.335 
0.342 
0.347 
0.350 

0 
0.125 
0,207 
0,262 
0.296 
0,323 
0,340 
0,352 
0,358 
0.362 
0.365 

0 
0.158 
0.239 
0.291 
0.325 
0.348 
0.363 
0,373 
0.379 
0.382 
0.383 

When e =  e, 

C(pF)< 
24.16(/, + /J 

2(* + 'i) D»] + ^Ti(»«^--D.)+o, (3-80a) 

Example 3-18. To determine the capacity between grounds and 

an antenna consisting of a horizontal wire l~  a 30 m long and 

da  * 6 mm In diameter arranged at an altitude of Z, + h -  15 m 

of a vertical overhang of the same diameter £, = 12 m. 

and 
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Using formula (3-80a), we compute the quantities preliminarily 

entering it.  At the assigned parameters of a system 

«-0,003«; A-3*; Ig«ütilU 40; 

,giL = |g JÜ--3.M1 
* «       " 0,003 

1 from Table 3-6 we find that 0,  - 0.3365 30 
30 

Concerning -£-~^±M 

concerning ~-- — - — - 0,25 from Table 3-7 we find that 0- - 0.291; 

/    12 k       3 0 
according to known relationships 7*:--=• — M   and --•■-—--0.25 from 
Table 3-10 we find that D?  =» 0.19*». 

Thus, we obtain that 

c =  24.16(30 + 12)        1020 
0.714 (4.0 - 0.336) + 0,286 (3,602 - 0.291) f 0,194 . ™ 3,7» 

-271  pp. 

Let us note that during the determination of capacitance of the 

antenna being considered by the addition of the capacitances of 

horizontal and vertical wires (see examples 3-13 and 3-16) its value 

proves to be equal to 283 Pp» i.e., 4.556 more than that calculated 

using formula (3-80a), considering the mutual effect of the wires. 

b) n  parallel wires (Fig. 3-6o). 

Fig. 3-60.  T-shaped wires 
lying in parallel planes 
perpendicular to a boundary, 

wiicrt' 

2.303L     * 

/.   r. 

,(»-„[iA_(1,*1i±ii_A)+ 
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and coefficient D,, D~  and D~  are determined Just as in the case of 
a single r-shaped wire, and coefficient B    is found from Table 3-8. 

At e ■ eQ 

C~ i PF- (3-8la) 

Example 3-19.  To determine capacitance between grounds and by 
an antenna formed by palrwise connection of each of the horizontal 
and vertical wires considered in examples 3-11* and 3-17. 

In this case -*•- —r-M and -£--0.25 and from Table 3-10 we 
I»        30 h 

find, that D^  - 0.192*. Then, using data obtained in examples 3-14 
and 3-17, we find that 

L m -L ( 5? (4,0 - 0,336) + - (3,602-0,291) + 
6  I 30 ^ 12   - "" "  " 

12 
6 130+12 V" "30+12 

+5[iöw(,'W5-0^)+ioJn2-(,'30,-0Hh 
-0,252 + 0.194- I.58&. 

Substituting the obtained values into formula (3-8la), we have 

c* "•",%■'*-««PP. 

If it is simple to summarize the capacitances obtained in 
examples 3-1^ and 3-17, then C  = Ikk  pF, which is 15.7$ more than 
the quantity calculated using formula (3-82a), taking into account 
the mutual effect of horizontal and vertical wires. 

5. T-ahaped wires   lying in  the planes perpendicular  to  the 
boundary. 

a) One wire (Pig. 3-6l) 

C~ *>g,+m     ,    fi . 
Ä[te^_^]+(_^(tai._^) + Ä    <3-82) 
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21, 
cz±zi 

2» 

^ *TÄ*«*1W*Y«T 

Fig. 3-61. The T-shaped wire 
arranged in the plane perpen- 
dicular to a boundary. 

where  the  coefficient  0,   is  determined from Table  3-6 when d - 2(& + Z-)j 

I  =   l0;  coefficient  z?2  from Table  3-7 when m - h;   I »   £,,  and 

coefficients  D^ from Table  3-10. 

When  e   =    e „ 

24.16(1, +y$ 

-^-[.,2<*^'>-£),U-ii-/»A.-ot)+i»r PF»    (3-82a) 

Example 3-20. To determine the capacitance between grounds 

and by a T-shaped antenna if its horizontal and vertical wires have 

the same sizes as in examples 3-13 and 3-16. 

In   this   case  2 '. =■ 30 m; I, - |2 m; A =.3 m, a - 0.003 

At such values a, 30 
a, + f, 

= 0.714; 12 
2/, + i, 42 

0,286. 2fi + 2l|  _   &« 
2*, + /, 42 

1.285; 

0,-0.336;    Ot = 0.291. 

find 

Prom Table 3-10 we further find that wheu —=.0.25 and -^--0,8 0,-0.263. 

Substituting the obtained quantities in formula (3-82a), we 

O24'16*30*^-» pP. 
8.901 
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Using this value, it can be established that simple addition 

of the capacitance of wires making up an antenna gives error of the 

order of B%,  and the relative difference in the values of the 

capacitance of T- and r-shaped antennas at the same length of hori- 

zontal and vertical wires is about 3.5* (compare example 3-18). 

b) n parallel wires (Pig. 3-62) 

Ca.fc«ft-f»J 
«.MM*    • (3-83) 

where 

-*• + 2</| + /t>  fr 
<• + »• •    * 

and coefficients £,, D?  and C, are determined Just as in the case 

of a single T-shaped wire, and coefficient Bn  is found from Table 3-8. 

Fig. 3-62. Several T-shaped 
wires lying in parallel 
planes perpendicular to a 
boundary. 

AWY*T»T«Y»T«»T«»T*»T»T 

When e 

CagH>6(/l + aj pp (3-83a) 

6.    A  V-ahaped wire parallel  to a boundary  (Fig.   3-63). 

gwft + U 

>-2,303 (K,-KJ 

(3-84) 
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where coefficient 0, is determined from Table 3-6 at I  - J,, d - 2fc : 

coefficient Z?, also from Table 3-6, but at I > l«, d  » 2h; a.id 

coefficients Y, and Y from Table 3-H and 3-12 respectively from 

the value of the angle 6 and the relationships 2h/l,  and l~/l,. 

Y«Y*ftY#,> »W«T*T*T 

Fig. 3-63. A V-shaped wire 
lying in a plane parallel to 
a boundary. 

When e ■ e 0 

C=* 24.16(/» + fi) 

(3-84a) 

Example 3-21. To determine the capacitance between grounds 

and horizontal V-shaped antenna, at an altitude of h  ■ 15 m and formed 
by wires 2a  * 6 mm in diameter and £, = 30 m and l~  s 15 m long 

intersecting at an angle of 0 = 45°. 

2ft In this case —=, 10000. —-1; — -2,  and from Table  3-6 we find 

that Dt-0,236,  and D',-0.541. 

From Table  3-11 we obtain that at 6 « 45°  and -£-«4-   coefficients 

I1 m 0.497,  and from Table  3-12 we  find that y„ = 0.131.    Then 

y = Y, - Y2 = 0.366. 

From formula (3-84a) the capacitance sought is 

-  24,16(30 4-15) m       _, 
"   3.962   "    PP* 

3-6. Capacitance in a System of Many Wires 

In the present paragraph formulas are given for the calculation 
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Table 3-11. Valuer of the • coefficient I1  entering formula (3-811). 

\* 
1.0 M 04 w 0.» 03 0.4 <U 03 0.1 

IdegX. 

180 0,3010 0.3004 0,2983 0,2942 0,2873 0,2764 0.2598 0.2346 0,1957 0,1323 
165 3029 3023 3002 2960 2891 2781 2613 2359 1967 1329 
150 3086 3080 3056 3016 2944 2832 2660 2400 1999 1318 
135 1185 3179 3156 3112 3037 2920. 2741 2469 2053 1380 
120 3334 3326 3303 3255 3176 3051 2860 2573 2134 1427 
105 3542 3534 3508 3457 3370 3234 2028 2714 . 2244 1492 
90 3828 3820 3780 3732 3635 3483 3254 2911 2393 1578 
85 3945 3936 3905 3844 3743 3584 3346 2989 2453 1612 
80 4075 4066 4033 3970 3863 3697 3448 3076 2518 1650 
75 4220 4i.ii 4176 4109 £997 3823 3560 3172 2591 1691 
70 4383 4372 4336 4265 4146 3962 3686 3277 2670 1736 
65. 4565 4554 4515 4440 4313 4118 3825 3395 2759 !786 
60 4771 4759 4718 4636 4501 4292 3981 3526 3857 1842 
55 .5004 4992 4946 4859 4713 4489 4156 3678 2966 1903 
50 5271 •  5257 5208 5112 4954 4712 4354 3838 3069 1971 
45 5579 5563 5509 5404 6230 4966 4580 4025 3227 2048 
40 5937 5920 5859 6742 5550 5260 4839 4239 3354 2136 
35 6360 6340 6272 6140 5925 5603 5139 4466 3566 2236 
30 6870 6846 6767 6616 6371 6009 5494 4778 3780 2354 
25 7498 7470 7376 7198 6915 6502 5923 5128 4035 2494 
20 8299 8264 8148 7933 .7598 7118 6457 6563 4351 2668 
15 9376 9330 9180 8909 . 8499 7926 7155 6129 4762 2892 
10 10960 10892 10681 10318 9793 9082 8149 6934 5345 3210 
6 13789 13663 13314 12771 12034 11079 9863 8320 6346 3767 

of the partial capacitances of typical systems of the many infinitely 

long rectilinear wires arranged either in an infinite space or near 

an infinite flat conducting boundary. 

Whole systems considered below are considered electroneutral 

(see § V-l), in connection with which only mutual partial capacitances 

are determined for them. 

In this paragraph formul*>, are given for the capacitance between 

two wires in the presence of other uncharged conductors. 

1. A  three-wire   line in infinite space   (Pig. 3-64). 

Pig. 3-64. A symmetric three- 
wire line in an Infinite medium. 
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Table 3-12. The values of the coefficient r„. 

which enters formula (3-84). 

\ s».'ft 

\w M 04 1.0 2.0 &.0 Note 
i.<*eg.\ 

0 0.648 0,359 0,203 0.106 0,043 
15 584 349 202 106 043 
30 497 328 197 106 043 
45 432 304 191 1045 043 
60 384 282 185 103 043 
75 348 264 178 102 043 i. 
90 321 249 172 101 043 T--1 105 300 237 167 099 . 043 V 
120 285 228 163 098 042S 
135 274 221 160 097 0425 
150 267 216 rss 097 0425 
165 262 213 156 096 0425 
180 261 212 156 096 0425 

0 0.571 0,312 0.175 0,091 0,037 
15 528 306 174 091 037 
30 461 292 171. 091 037 
45 406 274 167 091 037 
60 364 257 163 090 037 
75 331 242 158 089 037 1 
90 307 230 154 088 037 iS-=.0.75 
105 288 220 150 087 037 h 
120 274 212 147 086 037 
135 264 206 144 086 037 
150 257 . 202 142 085 037 
165 253 199 141 085 037 
180 251 198 141 085 037 

0 0,432 0,239 0.135 0,071 0,029 
• 

15 414 236 135 071 029 . 
30 379 229 133 071 029 
45 343 221 131 0705 02i 
60 313 210 129 070 029 
75 289 200 126 0695 029 /• 
90 . 270 192 124 (069 029 -a. «0.5 
105 255 186 121 069 029 h 
120 244 180 1195 068 029 
135 235 175 118 068 0285 
150 230 172 117 0675 0285 
165 225 171 116 067 0285 
180 223 170 116 067 0285 

0 0.238 0,136 0,079 0.042 0.017 
1 •      Jh «fc» 

35 235. 136 079 042 017 -?- = 0,25 
30 22b 134 079 042 017 't 

45 0.215 0.131 w,78 0,042 0,017 
60 204 128 775 042 017 
75 194 126 (!7> 042 017 
90 185 122 076 042 017 
105 178 . 120 075 042 017 A „0,25 

It 120 172 117 • 074 042 017 
135 167 Ü6 074 041 017 "• 

150 164 114 073 041 017 * 
165 162 113 073 041 017 
180 161 113 073 041 017 
0 0.099 fl.AH 0.035 0,019 0,008 
15 099 059 035 019 008 
30 097 059 035 019 008 
45 096 058 OS 019 008 
60 092 068 035 019 008 
75 092 057 035 019 008 

A-0.1 90 020 057 035 019 008 
105 088 056 035 019 008 «1 
120 086 056 034 019 008 
135 085 055 034 019 008 
150 084 055 034 019 008 •  • 
165 084 055 034 019 008 
180 0635 055 034 019 008 
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Partial capacitances are determined by the formula 

C|21   "=» Cxu   «■ Cs| 
fccr 

'i2i ™ wsi «■ *-3ii ^ TiTjT" 
3 In —-— 

(3-85) 

The capacitance between any two wires in the presence of a 

third is determined by the formula 

C|Ä 
In dV* (3-86) 

2. A   two-wire   line  over a flat  conducting boundary   (Pig. 3-65) 

Fig. 3-65. A two-wire line 
over a flat conducting boundary 
(grounds). 

a) General case: 

In A._ ,„A 
Ciu S: 2« — 

Cm Sf 2m 

Cm — 2itt 

In 
4 '"£- ^i 

-ln«-i. 

In 
4 

In 2^ In^L- 

In A 
a 

-In« 

In 
0| 

In^L- *!n« A 
4 

(3-87) 

al " «2 

b) Both wires are the same distance from the boundary: 

a; h, = Äp = fr- 

ill 



'IM = Vi"Of C-OfS: 
gait 

Cm = 
In [*/*(*rH*HM 

(3-88) 

c) Both wires are in a plane perpendicular to the boundary. 

In this instance in formulas (3-87) it is necessary to place 

<* = At-A,; </» = *, + *,. 

The capacitance between wires la the presence of a boundary in 
any  of the  cases at  bt   or o is  determined by the  formula 

cwi + c»i 
(3-89) 

3«     A   three-wire   line over a flat conducting boundary   (ground) 
(Fig.   3-66). 

Fig. 3-66. A three-wire line 
over flat conducting boundary 
(ground) . 

a) General case. 

Partial capacitances are determined by the formulas: 
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'101 

'HU 

»au 

«M(«II—•») + «n(«tt—»ui ± «u(»» — «td 

"»(«» — «i») -f «a («»— «n) + «n (»»—*a) 

■n («M — «it) 4- «II («M — a») ± "ii (■» — ■») 

where 

»tu =■ - 
aitaM — au*n 

CJSI 

1 «II (»M«3» —»»»»> + 

«Mt    .«lit      «1» 

«II»      «8».       at» 

*»•    »«•    ■» 

•»- «u(»»i»ta — »u»j») I- «U(»I»*M — »fs'ji): 

(3-90) 

*n 
1    i    2A, 1    ,.   *n 

2M 2M 

anr 

»M2s 

5^,„^:   .„-.„.-i-,4; 
-g-In — ,     «„-«„-—In — . 

I 

d.. is the distance between the i-th and fe-th by wires; dik  is the 

distance between the i-th wire and the mirror image of the fe-th 

wire. 

b) The wires lie in one plane (parallel to the boundary) at 

equal distances from one another: (A» « A, « A, - A and <*„ - du = <0- 

Partial capacitances are determined by formulas (3-90) when 

4. 4 four-wire   line  two wires  of which are  united  (Fig. 3-67). 

When d/a  > 2 the capacitance between wires 1 and 2 is determine i 

by the formula 
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c, 2«« 

¥■ 

JF 3=1> 

& 

-f-.«(fr (3-9D 

Fig. 3-6?. A four-wire line 
consisting of two pairs of 
identical wires lying in 
mutually perpendicular planes. 

5.     Two wires  inside  a cylindrical shell   (Fig.   3-68). 

Fig. 3-68. Two wires of infinite 
inside a grounded cylindrical 
shell:   a) the wires are 
located eccentrically relative 
to the axis of the shell; b) 
the wires are symmetrical 
relative to the axis of the 
shell. 

The capacitance between wires i and 2 is determined by the 
formulas: 

a) in the case of an asymmetric system (Fig. 3-68a) 

C- 
,„*?. S™! (JLtU Ä2L.1 

b) in the case of a symmetric system (Fig. 3-68b) 

(3-92) 

C<- 
R*-*    2*\ " (3-93) 

•\ R* + d>     « / 

6. Two wives  arranged between  two grounded planes   (Fig. 3-69). 

The capacitance between wires is determined by the formula: 
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C.S 
3ni 

-(^*1) 
(3-94) 

-S ^-^=^i Fig. 3-69. Two wiros arranged 
between two grounded planes. 

7. Three wires  inside  a cylindrical  shell   (Fig. 3-70) 

Fig. 3-70.  Three infinitely 
long wires inside a cylindrical 
shell. 

Partial capacitances are determined by the formula 

where 

'121 ci*-0«04-- 
2M 

-f^ R*-* 

V> + «»-!-««* 

<^- 
2nt 

*(&[-(# 
. (I = I. 2. 3). 

(3-95) 

(3-96) 

8. A wire  and two cylindrical  shells  coaxial with it,   one  of 
which   (the  interior)   is  not closed  (Fig. 3-71). 

Fig. 3-71.  An lnfinitesimally 
long wire surrounded by an 
open cylindrical shell and 
inside a cylindrical tube. 
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Partial capacitances are determined by the formulas: 

(3-97) 

C'   _   fc« 
«I-—5-r 

a 

c«-(^)'«""-'-^ 
til 

(3-98) 

(3-99) 

9. A  central wire  and wire on  the  circumference  ineide a 
cylindrical  shell   (Fig.   3-72). 

Fig- 3-72. A central wire and 
wires on a circumference inside 
a cylindrical shell. 

Cu»-™ 

£•„,=*« 

"4 
,niLlnA+j_,nAln|ji.r,_(iif-ir 

H      '•  *i  N  I«« [  \ if / JJ 

 5 Ji, 

taA,.A+jLta«.ta(jLfi-(ifir 

(3-100) 

(3-101) 

where n  is the number of wires. 

10. Two wires  on different sides  of a flat plate of finite 
thicknesst   having a  cut   (Fig. 3-73). 

Partial capacitances are determined by the formulas 

116 



Pig. 3-73. Two wires on different 
sides of a plane with a slit. 

s» =■(*)■«"*-' ***£*■ CIOICttl 
SI 

2r« 

'"i^P-) y H^)'-1' 
JW — 

2=t 

■(^♦y^r- 

(3-102) 

(3-103) 

(3-10A) 

11. Two wires  on different  aides  of an infinite grating of 

plates  of finite  thickness. 

a) The wires are located at random (Fig. 3-7**a): 

—r—• r.   ./• 

(3-106) 

44 
c;w»- 

In I  2a,   : y.  . 2o,     j 

CL. ä 2c« 

^•-^^ 
(3-107) 

where v is the number of the plate nearest the wire. 

b) The wire:; are located symmetrically relative to the grating 

(Pig. 3-74b): 

117 



a) 

a» 

b) 

■«es o 

X 

Flg. 3-71*. Two wires on different sides of 
an infinite system of plates:  a) wires 
located at random; b) wires located in a 
plane perpendicular to plates. 

c-„,Ä(£)V*-*-%k 
when At, *,</; 

I 

I MAi + Arf 
whenMt>': 

(3-108) 

when h-,   - h~ -  h 

^ffi^&J+$+Jl\. (3-109) 

where C\Q,  and C207  are determined by formulas  (3-106)  and (3-107). 
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1 

CHAPTER 4 

CAPACITANCE OF FLAT PLATES 

4-1.  General Remarks 

1. The present chapter contains formulas, tables and graphs 

for determining the capacitance of conductors having the form of flat 

plates. In all cases when nothing is said to the contrary, it is 

assumed that the thickness of the plates is infinitesimal. 

2. Data are given on the capacitance of solitary plates, 

capacitors, formed by plates of finite or infinite dimensions and 

also about partial capacitances in a system of three infinitely long 

plates. In this case one ought to have in view that the concept of 

the capacitance of solitary infinitely long plates does not have 

meaning. 

4-2.  Capacitance of Solitary Plates 

The present paragraph contains formulas, tables, and graphs for 

the determination of the capacitance of solitary plates of the 

following form: a circular disc; a semi-circular plate; an elliptical 

disc; a rectangular plate; a circular ring; a conductor formed by 

the union of either two coaxial circular plates, or two coplanar 

circular discs, or two rectangular plates lying in parallel planes, 

or two coplanar rectangular plates. 
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In using the materials of the present paragraph one should have 

in mind that the capacitance of plates of complex form can be 

evaluated on the basis of the general features of capacitance (see 

§ V-2), using the given data on the capacitance of circular and 

elliptical discs. 

1. Circular disc  (Pig. 4-l)l 

C-ba. (1-1) 

Fig. 4-1.  Circular disc. 

2. Semi-circular disc  (Fig. 4-2). 

& 

Fig. 4-2.  Semi-circular disc. 

The value of the capacitance of a semi-circular disc satisfies 

ihr following inequalities (compare example 2-4): 

&a>C,>8ta-0,7». (4-2) 

3.     Elliptical disc  (Fig.   4-3). 

Cm » 8sa* —i—. (4-3) 
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Fig. 4-3.  Elliptical disc, 

where K(*)— a complete elliptical integral of the first kind (see 

Appendix I) with modulus km 1/ I — i-jX. 

If the ratio of the axes of an elliptical disc a/b  monotonically 

rises, then at constant area its capacitance also monotonically rises, 

The numerical values of the functions CJ8ea = f (bla) are given in 
Fig. 4-4. 

•fa 0 0,003 0.006 0.008 

8wT 0 0.2239 0,2368 0.247« 

•#■ O.M 0,02 0.03 0,05 

0.2830 0.2897 0,3307 O.J5S2 

»/« 0.1 0,2 0,3 04 

*•• 0,413> 0.S208 0.S978 0.7284 

»/« 0.» 0.8 1.0 

0.84» 0.0972 1.0 

Fig. 4-4. The rela- 
tionship of the 
capacitance of an 
elliptical disc with 
:'.emi-axes a  and b  (a  > b)  to the capacitance of 
a circular disc of radius a. 

4. A rectangular dieo  (Fig. 4-5). 

i- ? -. 

-h— 

Fig. 4-5. A flat disc of rectangu- 
lar form. 

121 



The accurate value of the capacitance of a conductor in the 

form of a rectangular (including a square) disc is unknown.1 

Tho values of capacitance of a rectangular disc calculated by 

the method of grounds (see § 1-S), are given in Pig. '4-6. 

Furthermore, the following approximation formulae can be used; 

a) 

C9- a«a        (4-4) 

mln l±Y±±!«   +la(m+yr^) + J-  f N' 
3M 

3       3«    • 

where m = a/b   (see example 1-3) 

b) 
C»Ä-TT-. (H-5) 

,B(4T) 

determination of the capacitance of a disc of square form was 
the subject of a number of works. The fundamental results of these 
works are characterized by the following data for the quantity (7, 
(C, is the ratio of the capacitance of a square disc to the 

capacitance of a circular disc with radius equal to the side of the 
disc): 

1. G. Kavendish and J. Maksvell, 1879 [4-1] c, * 1,1332 
2. J. Maxwell, 1893 [4-2] c, *0.6666 
3. Raylelgh 189*» [4-3] c, > 0.5641« 
4. G. Howe, 1919 [4-1] C, * 0.5287 
5. G. Polya and G. Sege, 1951 [1-33       0.56418 < c; < 0.59018 
6. D. Allen and S Dennis, 1953 [4-5] C, < 0.6682 
7. E. Gross and R. Wise, 1955 [4-6] c,«Ö.J5T 
8. D, Reitan and T. Hlggins, 1957 [4-7] Ct * 0.B» 

The mosu complete analysis of the capacitance of rectangular 
plates i? contained in the last two of the works, from the results 
of which the basic data given in para.4 were obtained. 
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0»      10* 2 «' 5- «*                                                tf 

%}8ei 
U,0 

as 

OA 

03 

02 

i i i 

0,1 -1 
a 

0 1    2   5   4   5 « I0a/b 

Fig. 4-6.  A graph for determination of the 
capacitance of a flat rectangular disc. 

«/» 1.0 I.S *.o 3.0 4.0 » 10* 10* 10* 

CVBio 0.SM 0.4S4 0.401 0.339 0.308 0.188 0.130 o.ow 0.074 

5. Circular ring   (Fig. 4-7)x 

irene — • 
C.-8«- J H(V)d%, (4-6) 

accurate expressions for the capacitance of a flat circular ring 
have been obtained for a comparatively long time [4-8 to 4-10]; however; 
they are so complex that they are of only theoretical interest. The 
results of Nicholson [4-10] were obtained insufficiently correctly and 
referred to some particular relationships between radii of a ring. 
Higgins and Reitan [4-11] and Smayt [4-12] obtained rather accurate 
numerical results and Smayt also gave approximation formulas. The 
most complete results for the capacitance of a flat circular ring 
were obtained by Cook [4-13], who gave an accurate expression for 
the calculation of capacitance and conducted numerical calculations 
for the typical relationships of the radii of a ring. 
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Fig. 4-7.  A flat circular ring. 

where function H(Q)  is found from solution of the intr ral equation 

//(0)•sin0.c<»,e + ^2-), J //(!)-*<*. ?)df=l  "     (1-7) 

with the nucleus 

Kib. q>) 
sin» j-itcij lntg-5— sln*9-«ec*-lntf •—- 

sec** —sec*» 

The numerical values of the relationship of the capacitance of 

a ring to the capacitance of a circular disc of radius b  are given 

in Pig. 4-8. 

»/« 1.03 I.OBI 1.18 

cys.» 0.6817 0.8011 0.8» 

»/• 1JB I.2S 1.50 

CJfc» ojna 0.8976 0.9491 

»» M 3.0 4.0 

C/Jie    1   o.ssio 0.9» 0.99» 
<f  W tf     w 

Pig. 4-8. A graph for calculation of capaci- 
tance of a flat circular ring (dotted line - 
extrapolation). 

The capacitance of the ring can also be approximately determined 

with the aid of the following formulas: 
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C, -8.6. -1 ^arccos -J- + j/l- (-J-)* -Arlli -J-1 X 

X[> I (o.0143-f)tg»(l.28-^] 

|£<0,1% «hen b/a> l,l|; 

(1-8) 

r 2r.fe (a + 6) 

In U±±l\ 
\    fr-a/ 

|S<0,I%wh«n  fc/a< 1,11.« 

(1-9) 

6.     Two interconnected coaxial  circular discs   (Fig.   1-9). 

C0=l6za{f(t)dt, (1-10) 

where /(*)  is  found from solution of the integral equation 

fW + JLf/<0 ^—r 
' <*-* + (■£) 

<tt = 1. C1-11) 

Pig. 1-9. Two interconnected 
coaxial discs. 

The numerical values of the function —- = /(—) are given in 

Pig. 1-10. The following approximation formulas can also be used; 

'if a greater error is allowable, formula (1-9) can be used also 
for b/a  > 1.1.  Thus when b/a  ■ 1.25 6 = 0.57*, and when b/a  - 2 
fi - ?.6%. 
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tit/tea 

1£ 

'.6 

I.* 

».? 

Pip;. 4-10. A graph for the calculation of 
the capacitance of a solitary conductor, 
formed by the union of two Identical 
coaxial discs. 

p-1—\ k$r 

u« 0,0 ■ 0.4 0.« 0.8 1.0 1.2 I.S 

c 
8ia 

1.000 1.2054 1.2728 1.331? 1.3824 1.4276 1.4874 

lid ?.o 2.6 3.0 8.0 10,0 20.0 

c 
1.5631 i.ssno 1,6681 1,7792 1.8810 1.937 

a)  when lla > 1,5 

C0~ I6ta 

+H['-TH-r)'+t(t)1 
16 < 3,8%when lla > 1,5; 6 < 0.5%when lla > 21; 

(4-12) 

b) when lla > 1 

c- 16ta 

2 /    ' 
I H arcctg ■ 

it " a 

16 < 3.6% when   lla > I; ß < 0,9% when lla > 2.51 

(4-13) 

or 

C.Ä- 
I6«a 

*      / 

16 < 3% when //a > 2; 6 < 0,3% when lla > 51. 

(4-14) 
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7. Two interconnected ooplanar circular dieca   (Pig. 4-11) 

Fig. 4-11, Two intercon- 
nected coplanar discs. 

The accurate value of capacitance is unknown. At rather high 

l/a the following approximation formulas can be used, the first of 

which is more accurate: 

C0ä I6ta 

1 + 

C8=S£ ■ 
I6«a 

(4-15) 

(4-15a) 

When l/a  _> 3 the values of capacitance, calculated from formula 

(4-15a) differ from the values determined from formula (4-15) by 

not more than 0.1%. 

8. Two parallel reotangular dieaa interconnected  (Fig. 4-12). 
Numerical values of CJ&xa =*f (dlb)  at short distances between discs are 

given in Table 4-1. 

Fig. 4-12. Two interconnected 
rectangular discs lying in 
parallel planes. 

The following approximation formulas can also be used; 
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Table 4-1. Relative 
values of the capaci- 
tance of the conductor 
formed by the union of 
two rectangular discs 
lying in parallel 
planes 

(whenf <!) 
c. 

4ntfl 

\ m 
\ 0.001 0.00» 0.01 0.0 

«;»\ 

1 0,357 0,359 0,361 _ 
2 0.255 0,256 0,257 0,259 
3 0,217 0.218 0,219 0,220 
4 0.196 0.1965 0,197 0,199 

a) when dla < 2, alb > 1 

Ct=sS- 
* 4«a 

.    4a»       1   .   d       1  I d\* ,   1  / d\* 
"M-T+T-T(T)+ä(7) 

(4-16) 

b )  when dla > I.   alb > 1 

C,=*2Cn 

1 + 
4r.td 

(4-17) 

where CQ,   is the capacitance of a single disc determined from the 

data of p. 4 of the present paragraph. 

9. Two  aoplanar rectangular discs  interconnected  (Fig. 4-13) 

PiR. 4-13.  Two inter- 
connected coplanar 
rectangular discs. 

The accurate value of capacitance is unknown. 
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When <f/a» 1. a/6 > 1 

C,«2C -—, l (4-18) 

i + 
4**d 

where CQ, is the capacitance of a single disc determined from data 

given in clause 4 of the present paragraph, specifically 

c~ «— (4-19) 

4-3.  Capacitor Capacitance of Discs of 
Finite Dimensions 

In the present paragraph formulas, tables, and graphs are given 

for the determination of the Cu.pac* fcance between two conductors that 

are the flat plates of finite dimensions or are formed by the union 

of several plates. Such conductors are coaxial circular discs; 

rectangular (specifically, square) plates, both arranged in parallel 

planes, and coplanar; concentric coplanar rings; a coaxial circular 

disc and ring arranged Inside a cylinder with an impenetrable surface; 

and a circular disc arranged between two Infinite planes. 

1. Two ooaxial oiraular discs   (capacitor with circular plates) 
(Fig. 4-14).l 

C = 4«i.f/(0<tt, (4-20) 

where the function f(t)  is found from solving the integral equation 

i. 

'Determination of the capacitance cf a capacitor with circular 
plater, is the subject of a very big number of works |4-14 ]-[4-17 1. 
An accurate solution to the problem is obtained In  [4-18]. 
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Pig. 1-14. Two coaxial discs. 

The numerical values of the function C/8ea-/(//a) are given In 

Pig. 4-15.  The following approximation formulas can also be used: 

a) when  l/a < I 

C =*•$[«• -2- + 1n(l6*. '.£}- ll 

l»<5,8%when tfa<0,4] 

(4-21) 

or 

JJ<15H when //*< 0,1k 

C4-21a) 

b) when   i/o>l 

or 

4M 

r_i«ecffi 

| |*l<2.4% when Ifa>'%  |5| <0,7%when //a> 3J 

4M 

•■4-f 
I|8|<2,9% uhen //a>2,5; |J|<0,4% when //a>5j». 

C4-22) 

(4-23) 

'Formulas (4-22) and (4-23) give an overstated value of 
capacitance. 
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C/8*a - X 
C/dM 

\ * 

\ 

- 

Led 

\ V 
{ V ..-./.           ,           '* 1 » «/« 

II     1     1     1            II 
0 i I          4 t     $     a n     ti     u     *     a i/« 

Pig. 4-15.  Graph of function which charac- 
terizes relative capacitance between 
circular coaxial discs. 

'   1/« 0.0 0.1 0.4 0.« 0.» 1.0 1.1 

_£_ 
8.« 4.616 I.SSI4 1.107» 1.0186 0.9104 0.6380 

If 1.5 f.0 tJ$ 8.0 S.0 10.0 10.0 

C. 
6ta 

0.7644 0.6034 0.6S17 0.6140 0.6706 0.S330 0.816 

2. Two identical rectangular plates   (a capacitor with rectangular 
plates). 

The accurate value of capacitance is unknown. 

a) Parallel plates (Pig. 4-16). 

10? r   '   i 

Pig. 4-16. Two identical 
parallel plates. 
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The approximation numerical values of capacitance at some values 

of a/d  and b/d  are given in Table 4-2, and for square plates (a - b) 

in Fig. 4-17. 

Table 4-2. Relative values of capacitance 
between two rectangular plates lying in 
parallel planes. 

i 
0.» 0.666 0.S3 0.85 1.0 I.S 2.0 (.66 3.0 3,33 4.0 »,0 «.I M 

d 
0.28} 0.50 0.50 0M3 0,50 0.80 1.0 >.o 1.0 »,0 10 3.0 1.» 1.0 

C 
4— 

0,136 0.1« 
"" 

0.1» 
" 

0.1» 0.M3 0.3!» an» O30I 0J» 03» 0J»t 
1 

A3» 

Fig. 4-17. Graph of 
function which charac- 
terizes relative 
capacitance between 
two identical square 
plates lying in parallel 
planes. 

0     4* 04    Ofi    d»     tO if* 

*/« 0 0.0» 0.0» 

Cl*am m IS.» 3.41» 

i\a 0.08 0.10 0.» 

Cliua I.KM 1.01» 0,»» 

*!• 0,80 1.00 * 

CIHta 0.33» 0,281 0.IW4 

The following approximation formulas can also be used: 

when aid « 1, bid « 1 
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where Cn, is the capacitance of a single plate (p. 4, § 4-2). 

when a/d>3, 6/d>3 

C^t.'abld[l + \f*-dla(\ + In2ica/<Q] X 

X[l + l/«-<f/6(l+1n2jr6/d)l; (4-25) 

when old > 3, 6/d > 1 

Csäva-bldU + -~-dfti(l + ln2*a/<f)l; (4-26) 

when afd> 10, b/d> 10 

Ccxt.abfd (4-26a) 

j» < I0HJ. 

b)   Coplanar plates   (Pig.   4-18). 

When Afe>'l 

C-*4g-. W-27) 

where 

*~—L_; Jk'-KT=^. 1 + 2t 

The values of function JL- JL£L.«/(««) are given in Pig. 4-19) 

Fig. 4-18. Two identical 
oppositely charged co- 
planar plates. 
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CJkb 

04 

V 

0 0,00s am um atf 

0       ; t ~2    ''      j 4       Sfi 
Fig. J4-19. Graph of function which 
characterizes relative capacitance 
between two identical coplanar plates. 

aid 0.000M 0.0025 0.0*70 0.0590 0.2071 0.4!» 1.061 1.736 14.500 49,60 «!»,• 

€./•» 0.124« 0.4J6I 0,6254 0.7353 1.000 1.211 1.599 
1 

1.828 1 2,347 3.814 i.280 

i.— 

When bla > !. <r/rf»I 

C»4«*ln[4(I+2-)]- (4-28) 

When bfa » 1. aid < 1 

C=* 
r.tb 

'"KI+T)1 
(4-29) 

When dla > 1 and random b/a 

less- 

ir.td 

(4-30) 

where C-, is the capacitance of a single plate determined from data 

giver, in clause 4, § 4-2. 
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3.     Concert via  aoplanar rings. 

a) The general case (Pig. 4-20) 

?ig. 4-20.  Two concentric 
r,       coplanar rings. 

The numerical values of the function 

and various ^p/2*? are 8iven ln FiS« ''-21. 
4r«r(0,9 •m at   -ä.-6 

C/4xert0& 

0       «/      «2      53       44      05      Ofi      47       0«     V~r,/rt 

Fig. 4-21. Graph of function which charac- 
terizes relative capacitance between two 
concentric coplanar rings. 

r, 
0.417 0.417 O.S00 0.S83 0,«67 

r. 
0.50» 0.667 0.667 0.6V 0.833 

C 
M* ua Uk *M '.73 «nr.O.D 
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If rt < 1,5 (r, — rt),   then capacitance practically little depends 

upon r_, i.e., the external radius of the external ring can be 

considered infinite. 

Example 4-1.  To determine the capacitance of the circular 

capacitor being used during measurement of the dampness of wood, at 

the following dimensions:  rQ = 0.5 cm; r, « 1.5 cm; r? ■ 2 cm; 
r, = 3 cm. 

In this case 

-&-• *"?-» *-*-" 
Using Pig. 4-21, we find that for the relationships of radii shown 

2.8$, whence c« 2,86-4*—-—0,5-Kr*.0,9- •'.!.«• nr1* F=V-1,43 PF, e1 is the 
4r«#v0,9 4it9.|0» 
relative specific inductive capacitance of the medium. 

b) Disc in the circular cut of an infinite plane (Fig. 4-22) 

0 . 

where K is a complete elliptical integral of the first kind with 

modulus *»-5-; sng— an elliptical sine (see Appendix 1). 

Fig. 4-22. A disc located 
in a circular cut of an 
infinite plane. 

The numerical values of the function -JL«.//-ü-\ are given in 
Sir, 'V*) 

Fig. 4-23. 
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1 
C/Btr, Fig. 4-23.  Graph of a 

function which charac- 
terizes relative 
capacitance between a 
plane with circular 
cut and a disc in this 
cut (dotted line - 
extrapolation). 

3?  3?  CÜ      4' r,/r, 

From (4-31) can be obtained the formula 

I+JL 
c^.[i+A.+]/i-(Ä)r]ta—JU. (4-32) 

which gives the results differing from the data of calculation from 

formula (4-31) not more than 3%* 

When rtIrt < 1 

C«8«rt. (4-33) 

i.e., the value of the capacitance between a disc and plane when the 

radius of a disc is much less than the radius of the cut is approxi- 

mately equal to the value of the capacitance of a solitary disc 

(compare clause 1, § 4-2). 

Example 4-2. A 1 * 1 * 1 m tank made from thin insulating 

matei *i with specific inductive capacitance which insignificantly 

differs from (e = 83 eQ). On the bottom of the tank is a thin metal 

sheet which possesses in the center circular cut r„ ■ 5 cm in radius 

with a symmetrically metal sheet in it -^ = 1 cm in radius that 

possesses the name thickness as the plate. 

To find the capacitance between disc and a plate. 
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In view of the considerable significant dimensions of the sheet 

in comparison with the radius of cut, it is possible to consider the 

sheet an infinite conducting plane in an infinite medium. Taking 

account furthermore of the fact that the specific inductive capacitance 

of air, it is possible to assume with sufficient accuracy that the 

plane considered is separated from the lower half-space by an 

impenetrable boundary (see § V-2). 

In this instance an electrostatic field exists practically only 

in the half space.  Using the principle of mirror image, (§ V-2), 

desired capacitance o can be determined according to one of the 

formulas (U-31)-(4-33) or from Fig. 4-23 with calculation of the 

relationship a  = 1/2 C. 

At r1/r2  ■ 0.01/0.05 = 0.2 from the data of Fir,. ^-23 we find 

Cfi*rt - 1,07. 

Therefore, 

C - l/2-8tr,-l.07 - — -8-83 ! 0,01.1,07 - 3I,2.IQr» p . 31,2  pF. 
2 4*.9-10» 

If we use for calculation formula (4-33), then 

£' - 1/2-8W, m 29,3 pF. 

The relative error in determining the capacitance between the 

conductors being considered from formulas (4-31) and (4-33) is 

t. *=&_.ioo% - 3I,2~29,3 .too« - 6,IH. 

4. Coaxial disc and ring inside a circular cylinder with an 

impenetrable  surface   (Fig. 4-24). 

C- ± . (4-34) 
JL.X+« 
« » 
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1       < . ■> ..—um— 

I  

Fig. 4-24. Coaxial disc 
and ring inside a cir- 
cular cylinder with 
impenetrable surface. 

The numerical values of the parameter a are given in Pig. '4-25, 

Fig. 1-25. Graph for 
determination of parameter 
a which enters formula 
(4-34) (dotted line - 
extrapolation). 

(a) 

X 0.10 0.» 0.30 0.40 0.50 0.00 0.80 1.00 - 
rtpta. 
•fle. 
no- 

rpciu- 
HOCTfc 

0.» 0.144 O.I9i 0.207 0.312 0.213 0.21.1 0.214 0.214 0.214 0.003 

0.50 0.83 1   i.a 1.57 1.70 1.75 1.7« 1.79 1.79 1.79 0.03 

0.75 3.»   I   5.W «.01 6.89 8.M 0.07 7.04 7:07 7.07 0.U 

KEY: (a) Absolute error limit. 

5. Circular dieo and two infinite planes parallel   to it 
(Fig. 4-26). 

C=.8»6 jgWdt. (4-35) 
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Fig. H-26. Circular disc, 
between the infinite 
planes, interconnected. 

Function g(t) is found from solution of the integral equation 

*W-TI*<'- 8f(5**-« 

with nucleus 

«<'-^-iJ<-.)-^(^. 

where 

I  f 2«1* J» fln2wh»nn-ö; 
."■." J  «>•+1  " tr* (2* - I) (2«l)> (2»i + 1): Cwhen n > 0) 

C(2n + .-§, n L. 
i«+i the zeta-function of Riemann (see Appendix 1). 

For the relationships blh < I 

c 
8.» 

1+..i+,.(±;+[,_ja].(i)'+ 

(1-36) 

„here a-^?; C(3)- 1.202. 
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4-4.  Capacitor Capacitance of 
Plates of Infinite Length 

The present paragraph contains formulas, tables and graphs for 

the determination of the capacitance between two conductors that are 

flat plates of infinite length or formed by the union of several 

plates. Among the conductors being considered there are two coplanar 

plates; three coplanar plates two of which are connected; two 

mutually perpendicular plates; two parallel plates; two plates at an 

angle with eath other; plates perpendicular to two infinite planes; 

and plates parallel to two infinite planes. 

1. Two  coplanar plates. 

Formulas for determining capacitance per unit of length between 

two infinitely long plates lying in one plane are given in Table 4-3. 

Example 4-3. To find capacitance per unit of length between two 

plates a = 10 cm wide in a medium with specific inductive capacitance 

e, if the distance between plates is d  ■ 1 cm. 

In accordance with clause 2 of Table 4-3 the calculation is 

made from the formula 

where the moduli of elliptical integrals are 

(l+'fJ 
--■0,002267* 

*"-l-*»-0.9977324, 

From the values of moduli found with the aid of the table of 

Appendix 2 we establish that 

K (*) -1,57169; K fff} - 4,43287. 
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Substituting numerical values into the given accurate formula, 

we  obtain 

_        4,43287      «««-.. 

If we make  use of the approximation formula given in clause 2 of 
Table 4-3,  then 

<W"r>[«('+«i)]- 
■■£•■• Id U (l + 2-^jj - 2.82075- 

Thus, the relative error of the approximation formula for the 

case considered is 

c.-c !2h_ 100H - 2,82045«-2,82075. {m% 00,|% 
C, 2.82Ü46. 

With increase in the ratio of a/d  this error in absolute value 
becomes still less. 

2. Three  aoplanar plates,   two  of whioh are interconnected. 

The formula for determining capacitance per unit of length 

between two joint plates and the third plate (two plates have 

identical width and are equidistant from the third) are given in 

Table '4-4. 

3. Two mutually perpendicular plates. 

a) Plates of identical width (Fig. 4-27). 

C-t.-i-. (4_37) 

*t 
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Fig. 4-27.  Two mutually per- 
pendicular infinitely long 
plates of the same width. 

>L .'.rr^ 

The parameter ^ (0 < ^ < I) is determined from the system of equa- 

tions (for example, by means of exclusion of the unknown parameter p): 

j^     V        4 / a 1—2»-8ln2rp — V-co»4np + y.8ln6*p+... 
•«(p) I— 2»coi2np + 2fl*co»4np —2?».cos6«p.f> ...' 

(4-38) 
t'L l\ 

.,        °\        4 / M— ?.cos2ity-f- Vsln4r-p + 3g»coi6itp —... 
»i(p> «$in2s(> —2»«sJn4r.p + 3fl»$in6«p —...    ' 

where 

f^' <p<-=-: 
M*)i*oW is the theta-function and its derivative (see Appendix 1). 

The approximation value of q  can be determined from the formula 

•  I—l 9l =*__.. 
«  Kl + Xi* (4-39) 

For values of X>0,4 this formula gives the value of the 

parameter q  with error exceeding 1$. 

A more accurate value of q  can be found from the formula 

»,.L„,-8 *ff-*E -„x 

(If X)[X'-(1-^)1 

(x'+i-^y^o-^)1' 
(4-40) 
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where 

P—8 

The numerical values of the function C,/e=»/(a/d) see in Fig. 4-34 

at 9-- 90°. 

b) A plate and a half-plane (Pig. 4-28). 

r   r-i 1  ^* (4-4l) 

where q(0<q<l)  is determined from formulas (4-38)-(4-40) with 

replacement in them of dimensionless parameter X with Xx =■ y% 

Pig. 4-28. Mutually perpen- 
dicular plates and half- 
plane. 

h 

c) A plane in which one plate passing through the middle of 

another plate is located. 

The formulas for determining the capacitance of systems of this 

type are given in Table 4-5. 

'I. Two parallel plates. 

;x)  Two plates of different width (Pig. 4-29). 

Dependence C,/4ne =■ f (btld)  at some fixed values of ^-J^2  is depicted 

in Pig. 4-30. 
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Pig. 4-29.  Two parallel 
plates of different 
width. 

Ci/4M» 

0 12 9 4$ € 7' b,/a 

Pig. 4-30. Graph for determination of 
capacitance between two parallel plates of 
different width (dotted line - extrapola- 
tion) . 

b) Two plates of identical width (Pig. 4-31). 

(4-42) 
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1 

Fig. 4-31.  Two parallel In- 
finitely long plates of 
identical width. 

and the modulus of fe elliptical integrals is found from the equation 

±~4.lK.£(M)-E.F(M)]-4--K-Z<M). 

»-.*./i(i-t). 

where F (ß. k).  K; E (ß, ft). E are elliptical integrals of the first and 

second kind; Z(ß. ft) is the zeta-function of Jacoby (see Appendix 1). 

Numerical values of C«/e  depending on b/d  are given in Table 4-6 

and in Pig. 4-32. 

Table  4-1 5. 

m 0,007t 0.0170 0.0303 0.04M 0.0723 0,0998 0.1335 0.1731 0.2213 0.1167 

<V 0.50» O.S773. 0.M» 0.7143 0.7817 0.8508 0.9231 tiOOOO 1.0833 1.1758 

M 0.3461 0.43» 0.S42S 0.8975 1.2698 1.177» 2.5038 3.6818 4.6629 •.0666 

<V 1.»» 1.4001 1.8480 I.9B83 1.4347 3,4597 8,8198 5.0929 6*806| 7.4BM 

»/< 7.3113 ».«71 9.781* II. «4 14.138 I7.JS9 ».392 23.833 28.676 30.686 

c,/» 1.9127 10. IM 11.480 18.731 18,918 19.098 22.282 26.4(5 26.646 31.831 

Kor approximation calculation of the capacitance plates being 

considered between the following formulas can be used. 

At   */<f>l 

«-••7-[l+T--fft+h*-r)f 
I«<1,5% at    4<Mf<28|. 

(4-43) 

152 



at  4? «3 Ö.4  as  as   a? äs  äs   v>   v    tJv* 
Fig. 4-32. A graph for the determination of 
capacitance between two parallel plates of 
identical width. 

At  14 <&/<*< 30 

(4-44) 

At b/d >  32 

IK SKI. 

(4-45) 

At b/d  «  1 
Cr- 

||8|<0,3%   at   b/d < 005}. 

(4-46) 
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5. Two platea  at  an angle  to one another. 

a) Plates of identical width (Pip. 4-33) 

Ci-i.-S-, (4-47) 

« 

where ^(0< <|< 1) is determined from the system of equations (for 

example, by means of exclusion of the unknown parameter p): 

•oW 

^ I — J?gcos(2ap — f) + VCOS2(2KP—y)—Vcos3(2rp — y)-f.... 
1 — 2f cos 2*p -f V cos 4*p — 2j» COJ 6rp -f ... 

»0 
'«■"■'■I " ' » cs 

ysln(2np—?)-Vstn2(2i;p —y)-t-3gi»»»n3(2itp —y) —..; (4-48) 
f-slnfep—2v*sln4isp + 3j*jio6sf--... 

'-/■;# 

.   0<p<-l-, 

M*). bl(x)  is the theta-function and its derivative (see Appendix 1), 

Pig. 4-33. Two plates of equal 
width, located at an angle to 
each other. 

L * .1. « 3 

The approximation value of q  can be determined from the formula 

*-4-     '-X (4-49) 
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A more accurate value of q  is found from the formula 

*—-5—+ ^-i-. 

where 

a =» (cos<p —X)*-f (1 + ?{ti)*sln*<p; 

p • (cos«p — X)» + (1 + $1) sin» <p; 

T - (4cos«p — X)(l + ^) sin* 9 cos <p; 
8X(l-cosy)(l + X) 

P   (coif-X)d-X)  ' 

(4-50) 

Numeri cal values of C,/e depending on a/d are given in Fig. 4-34 

<& 

H a/A 

Fig. 4—34. A graph for determination 
of the capacitance between two plates 
at an angle to one another (dotted 
line - extrapolation). 

h)   ['late and half-plane (Fig. 4-35). 

C,-«. "+' C4-5D 
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Fig. 4-35. Ar infinitely 
long plate and half-plane 
at an angle to one 
another. 

J 

where q (0 < q < 1) is determined from the formulas (4-48)-(4-50), in 

which the quantity X is replaced with J^ =.)/£, 

6. Plates perpendicular  to  twc  infinite planes. 

The formulas for the determination of capacitor capacitance per 

unit of length in systems consisting of one or two plates between 

two planes are given in Table 4-7. 

7. Plates parallel  to  two infinite planes. 

Formulas for determination of capacitor capacitance per unit of 

length for one or two plates arranged halfway between two planes are 

given in Table 4-8. 

4-5. Partial Capacitances in a System of 
Many Infinitely Long Plates 

Formulas for determination of partial capacitances per unit of 

length between strips in a system of three infinitely long plates 

are given in Table 4-9. 

Example 4-4.  To determine complete and partial capacitances per 

unit of length between strips in a shielded connected strip line 

with odd wave mode (Fig. 4-36), if 2h  - 1 cm, b  = 0.5 cm, 2d  ■ 0.5 cm 
and the dielectric is air. 

We find first the partial capacitance between strips Cp-j?» 

using the formula of clause 5 of Table 4-9. 
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Table 4-9.  Formulas for determination of 
system of three infinitely long plates. 

partial capacitances in a 

System of con', 
due tors 

Calculation diagram Calculation formulas 

Three coplanar 
plates, two of 
which have 
identical width 
and are located 
at equal dis- 
tance c from the 
third 

J±A 
\ 

Cm 

where 

*?- 

Cui-C„-2. ..-£-, 

vH;'(,+f)(-f^) 
A plane in the 
cut of which 
two plates of 
identical width 
are symmetri- 
cally located 

Two plates 
arranged sym- 
metrically 
relative to a 
third perpen- 
dicular to them 

fSTi 

7 Tv" 

CM 

"(*-*) 
r 

1 V 
Cw-Cui-2.. 

where 

»-■2- 
«+4+* 

•+4i ('+4)(«*++*) 

*!- 
■ +• 

(•+4-)(,+-f+4) 

*■-(*-£)' 
C« - Cm - &• «T- 

wh«r* 

*•- 

(,+f)'' 

»?- ■      f('+f) 
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Table  H-9   (Cont'd) 

System of con- 
due to rs 

Calculation diagram Calculation foiimaas 

Two  plates 
arranged  sym- 
metrically 
relative  to a 
cut  in an infi- 
nite plane 

/ 

Cm 
"(*-*)■ 

K, 

T 
Cm-c^-fc-^s-, 

where 
*•- 

■4- 

(-fr 
i 

i+— ■
+(i)" 

-H'+i) 
Two united 
planes halfway 
between which 
there are two 
plates parallel 
to them 

Cui' 
-(*-*)■ 

K, 
IS1 

where 

•h> ÜÜ 
sh< IT'T") 

V 

ch» 

Two united 
planes between 
which two 
plates perpen- 
dicular to them 
are symmetri- 
cally located 

where 

*--(f-*). 
«a,- Cut -fc.—J-, 

,..(f.i^)..l.(f-t) 
CO»» 
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! ■ S 

/ 

m. i—r™- 
xEmx 
A* I  g» 

Fig. 4-36.  A shielded 
connected strip line 
with odd wave mode. 

Calculating the moduli of elliptical integrals, we have 

*h« (*_   0.25 \ 
V *' 0.5; 

«h» /JL    0.25 +0.5 \ 
I 2 0.5      j 

• 0,0278. 

*J - -1? °'5 J      I2      °*J - 0.9381; 

(*')i- I-*«- I - 0,0276 -0.972*      - 

(*!)» - 1 — ft* - 1 - 0,9381 - 0,0519.    , 

Further with the aid of Appendix 2 we find 

K - 1.582; K' - 3,196; K, - 2.806; K^ - 1,596. 

Substituting the numerical values into the formula for determina- 

tion of capacitance we obtain 

<*.-• /£._5jA-8.854-vri2(*£*.-2£2-\-2.33 pF/m. 
"*  IK U.582  1.696 J 

The partial capacitances of each of the strips relative to the 

grounded planes are determined analogously 

2,808 C, - C« - 2t.5j- - 2-8.654. KT»- ?22- - 31.1 pF/m. 

The full capacitance between plater, i: 

C, - CM + £s*.-..£. -8.854-KT».^-- 17.9 pP/m. 
*   _.K...     1.68» 
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CHAPTER   5 

CAPACITANCE OF SHELLS 

5-1.  General Remarks 

1. In the present chapter formulas, tables, and graphs are 

given for the determination of the capacitance of conductors in the 

form of open and closed shells. 

Especially considered are open shells of random form, and also 

any (including infinitely long) shells enveloping other conductors. 

The thickness of the open shells in all cases (if not contrary) is 

assumed infinitesimal. 

2. Closed shells not enveloping other conductors, in an 

electrostatic sense are equivalent to the continuous conductors of 

the same form. 

5-2. The Capacitance of Solitary Open Shells 

In the present section data are given on the capacitance of 

solitary conductors in the form of open shells which possess the 

form of a hollow spherical segment, a hollow paraboloidal segment, 

or a cylindrical tube of finite length.1 

'Also known are the results on an electrostatic field, and re- 
spectively the capacitances of hollow spherical shells with one [5-1] 
or two [5-^1 circular cuts. These results, however, are so complex, 
that their utilization for computation of capacitance is quite dif- 
ficult; therefore, data on the capacitance of the shells in -he 
present paragraph are not given. 
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1. A  hollow spherical  segment   (Fig. 5-D 

Fig. 5-1.  A hollow spher- 
ical segment. 

a) General case: 

c,=4*«,(i—!=£si). (5-D 

The values of capacitance can be determined also from Fig.   5-2. 

CjSjUnta 

«2 

 , 
\ H N 

V. 4 
^j V 

\ 

Fig. 5-2.  A graph for the determination of 
the capacitance of a hollow spherical seg- 
ment (dotted line - extrapolation). 

• 
• 

3 

M « 
1 

1« • 
r 1 

f 

0.99030 0.96933 0.97499 0.95221 0.91907 0.074« 0.01831 
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(Continued) 

1 9 —- * 
• 

JL. 
i« 

3 -— . 
4 

13 — n 
M 

JL. 
• 

IS —— « 
M 

4M« 
0.74970 0.8601« 0,57714 0,47512 0.3S4B 0.H678 0.124« 

b)   A  hemispheric  shell   (9  =  IT/2) 

C, - 4«w (-J- + -L\ = 4«w0.i 8183. (5-2) 

2. A  hollow paraboloidal  segment   (Fig. 5-3). 

C, = 8».aj«t»<*)(ft, (5-3) 

where the function U;(x) is found from solution of the integral equa- 

tion of Fredholm with a continuous nucleus: 

and 

p = hla. 

K G». ») = i=^ IK (i») - E(^)| + *~£ IK (v) - E Ml, 

K, E are complete elliptical integrals of the first and the second 

kind (see Appendix 1) with moduli 

l■-_. &=M «. p(t + S) 
yi+f«(t-«)»'     vi+^t+o«' 

The dependence of capacitance on the quantity h/a is represented 

in Fig. 5-**. Furthermore, at rather low h/a the following approxima- 

tion formula can be used: 
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^H(i+i('Tr-i(-s-r+w(^r- 
(2 "rf+102T.3N85 • (2 -rf- •]~~ 

1829 
128-2835 

Stall + 0,08333(2 A?_0.02083(2 -£-)* + 0.00923(2 -J-\*- 

- 0.00504 (2 Aj* + 0,00310 (2 A)1*—•-. ] 

|«<0.1%   at  0<A/a<iy2J. 

(5-4) 

Pig.   5-3.     Full paraboloidal 
segment. 

t*^ 

m 0.1 04 0.3 0.4 

C. 
8u 

1.0033 1 0128 1.0776 1.0487 

(Continued) 

« M 0.6 0.8 1.0 

••« 
1.080 I.G8S 8.118 1.134 

(Continued) 
> 
• 14 1.8 t.0 

1.183 1,173 1.188 

Kig. 5-1*. Graph for the determination of the 
capacitance of a hollow paraboloidal segment. 

If h/a <  0.3, then the capacitance of the paraboloidal segment 

is approximately equal to the capacitance of a circular disc a  in 

radius (the error of such replacement does not exceed 2.7%). 
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3. Cylindrical   tube  of finite   length   (Pig. 5-5). 

Fig. 5-5.  Cylindrical tube 
of finite length. 

The numerical values of the capacitance of a cylindrical tube of 

finite length are given in Table 5-1 and in Fig. 5-6.l 

The following approximation formulas are valid also for the 

computation of capacitance: 

C9~^ta * when  J_<4; ,D(Wf) 
(5-5) 

C,=*4*«i-—^4—r when 9>-i->4. 
0 

("")VT? 
(5-6) 

Note.  The values CJ8za  when h/a  £ 0.5 are determined from 
formula (5-4)  Lth an error of <0.1j8; at h/a  >  0.5 by 
means of numerical integration with error <1%. 

c- 4KM—- 

»Hh< 
1 + <~T 

>(»±-if 
(5-7) 

*The values shown were obtained on the basis of the results of 
works [5-3 thru 5-5], and also from the data of numerical calcula- 
tions, politely given to the authors by Professor L. A. Vaynshteyn. 
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Table 5-1.  Relative values of capacitance of 
a finite cylindrical tube. 

1 
m 

0.! 0.3 0.5 0,7 0.9 I.I 1.3 1.5 

c. 
4=M 

0.6192 0,7922 0.9122 * 1,0141 1,1066 1,1929 1,2748 1.3534 

1 
* 

t.7 1.9 2.1 2,3 2.5 2.7 2.9 3.1 

4=«a 
1,4291 1,5025 1.5739 1,6436 1,7118 1.7786 1.3441 1.9086 

a 
3.S 3,9 4.5 4.9 5.9 6,5»   '   7.9 8.9 9.9 

G. 
4=M 

2,0346 2,1571  2,3354 2,4514 2,7314 3.0015 3,2620 3.5158 3,7636 

a 10,5 11,5 12,7 20 25 60 100 1000 

c. 
4bcta 

3.9097 4,1494 4,4314 6.0519 7,092^ 13.632 20.332 68,900 

4/rxw 

Of     2     J 4     5  5 7     8     9    vTJa 

Fig. 5-6.  Graph for the determination 
of the capacitance of a cylindrical 
tube of finite length. 

When l/a  >> 1 the conductor considered becomes a rectilinear 

wire, and the formulas given in § 3-2 can be used to calculate its 

capacitance. 
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The errors of formulas (5-5)-C5-7) are characterized by the 

curves of Fig. 5-7. 

Fig. 5-7.  Graph for determination of the 
inaccuracy of formulas (5-5)-(5-7). 

5-3. The Capacitance of Solitary Closed Shells 

The conductors considered in the present section can be 

divided into the following groups:  conductors bounded by spherical 

surfaces, conductors of ellipsoidal form, conductors of toroidal 

form, a cylindrical conductor of finite length, and conductors in the 

form of regular polyhedrons. 

The capacitance of conductors of more complex configuration can 

be evaluated on the basis of results for the capacitance of a sphere, 

a cylinder, a tetrahedron, a cube and an octahedron (see § V-2, and 

also [1-3]). 

1. Sphere   (Fig. 5-8). 

C, =» 4K».O. (5-8) 

2. Two  noninterseating  spheres. 

a) General case (Fig. 5-9): 
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where 

C, - 4*..a6.sh«.^[6.shna+flsh(n_1)a + 

,        l' L-l 
a »h MM + b th (n — 1)«   J-*h «a J * 

. « » Arch 
(2/)« —d»-f 

2oft 

(5-9) 

Pig. 5-8.      Pig. 5-9. 

Fig. 5-8.  Sphere. 

Fig. 5-9.  Conductor formed by the union 
of two nonintersecting spheres of dif- 
ferent radii. 

At low values of the parameter a/21  the approximation formula 

can be used 

C0~4m(a -$- b)' 

, 1  a» 
I 'a + b 

ab (5-10) 

(20» 

I« < 1,0% at a12l < 0,5; bla < 0,5]. 

Accurate and approximation numerical values of the function 

rea - f(b, 

in Fig. 5-10. 

Cfl/4irea = f(b/a)   at various values of the parameter a/21  are given 

b) Two intersecting spheres of identical radii (Fig. 5-11): 

c-rr+' 
^1 »hi»? 

(5-U) 

where ß ■ Arch £/2a. 
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o~tii   at  na   44  <to   a» 

Pig. 5-10. Graph for determining the 
capacitance of a solitary conductor 
formed by the union of two noninter- 
secting spheres of different radii. 
  accurate values,   
approximation values. 

N. »/« 

V\ 0.0» 0.10 0.30 0.40 0.69 0.80 1.00 

O.Ol 1.0« LOSS 1.19» 1,393 1.SM 1.7*1 1.9*0 
COS 1.0« 1.099 1.1*1 1.3*1 1.543 1.733 1.90» 
0.i0 1.040 1.0*1 (.181 1.85» 1.489 1.653 MIS 
0.20 1.0a 1.0*4 1.139 1.3*0 1.39» 1.539 1.669 
0,39 1.039 1.049 1.100 1.301 1.31» 1.429 1.5« 
0.40 1.01» 1.0» 1.074 1.157 1.347 1.3« 1.45» o.so 1.01» 1.03* 1.064 1.118 I.MS 1.284 1.386 
0.60 1.00» i.oir 1.037 i.osa 1.183 W» 

0,70 1.00» 1.010 1.034 1.063 M» a» 
O.SO i.on 1.00» 1.014 "* *■ 

tm 

At 21 - a + b  (adjoining spheres) 

»1« 0.111 0.17« 0.350 0.333 0.429 0.838 0.667 Ml» 1.0» 

4cta 
1.003 1.008 1.0» 1.040 1.070 1,115 1.17* 1.7» I.3S* 
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Pig. 5-11.  Conductor formed by 
the union of two nonintersect- 
ing spheres of identical radii. 

For a rather low value of the parameter a/21  an approximation 

formula can also be used 

Cs2£&K<a—l— (5-12) 
1 + -=- 

2K 

1*<0.3K at  a/2f<0,5|. 

The numerical values of the function CQ/4T\ea  « f(a/l)   are given 

in Fig. 5-12. 

c) Two touching sphere of different radii (Fig. 5-13). 

C..fc..ji.[,+X+4_2,_t(,+-i-J-. 

(5-13) 

where <{;(1 + x)  is a psi-function (see Appendix 1), y is the Euler 

constant (y -  0.5772...). 

The table of values <Ji(l + x)  is contained in Appendix 6. 

The data of the table to Fig. 5-10 can be used to determine the 

capacitance of two tangent spheres provided 21 = a + b. 

The approximation formula for rather low b/a  has the form 

C.-^Ca+ft) 1—  '    I (5_iH) 

.     L    ,+T+(*)J 
I»<0,8* at b/a<0,2S). 
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C^/t/tu 

Fig. 5-12.  A graph for determining the capac- 
itance of a solitary conductor formed by the 
union of two nonintersecting spheres of iden- 
tical radius.  1   accurate values, 
2   approximation values. 

Pig. 5-13. Conductor formed 
by two touching spheres of 
different radii. 

d) Two intersecting spheres of identical radii (Fig. 5-1*0. 

C, =- 8ina-ln2 « 4iwa-1,3862. (5-15) 

3. Conductors  bounded by  two intersecting spheres, 

a) General case (Fig. 5-15). 

0<«<«. 
t<»<2«. 
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Fig. 5-11*.  Conductor formed by 
two touching spheres of iden- 
tical radii. 

Fig. 5-15.  Conductor bounded by two intersect- 
ing spheres. 

At uj < IT the conductor has the form shown in Fig. 5-15a; at 

tj > 7T (Fig. 5-15b) the conductor has the form of a spherical hole; 

at w = ir (limiting case) the conductor degenerates into a single 

sphere. 

Radius a  is always finite, radius b  is found from the expression 

.    a-siol 
|«ln<— «I 

and can assume infinite values. 

In the latter case (6 = w-Tr;Tr<u>< 2ir) the conductor has 

the form of a spherical segment (Fig. 5-15c). 

At 8 = u/2 (w < TT) and at 8 ■ IT - u/2 (u > TT) the radii of the 

spheres are identical: a  » b. 

For any of the conductors of Fig. 5-15 capacitance in determined 

from the formula 
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a-slnl 

x[t(« + i)-*(-5-+i}+taf]T. (5-16) 

where  ty(x)   is  a psi-function  (see Appendix  1). 

If ID is  a rational  fraction, multiplied by IT or 2IT,  then the 
capacitance of any of the conductors  in Pig.   5-15 can be expressed 
in  finite  form: 

whe n      »- ^Z1*"^«   <l<n<2m) 
2m 

g-j      ^a-4 

V (_l)'+».sln 
2»-l 

«-I    ig-j 

+2 
*-i        i-i 

(-1)*+,.«IB 
at—l 

,♦« 2is 
(2«-l)X 

tT «■    ' 
(5-17) 

at 

3ns ~~ <**$<* <1m-\) 
Cfrnilnt 

• =» = X 

—•I        tm-t 

*-i £4 K£r+*)-3 

*At high n the series contained in (5-16) decreases as 1/n . 
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mmasmvmmmmssme IL.IUIJ;,ULI!. jjji^.imu.iiig^ggggwiy-i'.'BJBu * vmmwe^mmiimfm 

'-""'■('"T)-5 
CM- 

Urn 
*-J |iQ 

+-i— 

fcn-l 
•CO! ■ 

SM-4 2f 
2m —1 

•In gnfa 15-18) 

For the case u> < TT  (Pig.   5-15a)  the formulas  are still more 
simplified and have the  form: 

at  u) =  2v/m   (m =  3,   4,   . . .; 

Ct»4RiaJl- 

+ sln« 

at w » %/m  (m = 2t   3t   ...) 

(5-19) 

Ca«4xta l + «ln» f\-j t-1 (5-20) 

The numerical values of the quantity CQ/4nza for some w and 6 
are given in Table 5-2. 

The numerical values of the capacitance of spherical segments 
CQ/4-nta = f(tn)  are given in Pig. 5-16. 
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Table 5-2.  Relative 
valuos of capacitance 
of a solitary conduc- 
tor formed by two in- 
tersecting spheres. 

c. 
4KM 

\ 

« 
• 

■ 
4 

« 
T 

*■ 
. 4 

3 
1.35 1,36 — — 

X 

T 1.08 «.29 — — 

3K 

2 
0,997 0,987 0,846 0.768 

3K 0,991 0,775 0,818 0.475 

%/4*f 

Pig. 5-16. Graph for the deter- 
mination of the capacitance of a 
spherical segment. 

" »PK^^W^I W !■—, ■>—^MJ — 

b) Particular cases. 

The formulas for the determination of the capacitance of some 

typical conductors formed by the intersection of two spheres are 

r.l vr.-n In Tab Jo lj-'J. 
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^jB^ TJ^ SUIW 'Mf H 

Table 5-3. Formulas for determination of the capacitance of some 
conductors formed by the intersection of two spheres. __  

•H T3 

Conductor 

name 

Two inter- 
secting 
spheres at 
w » ir/3 

diagram 
Calculation formulas 

C»— 4*M 1 + ilnl 

r !_^ > i-ii 
HT+I) "-B(,t+I) ^ 

The same, 
at equal 
radii of 
spheres at 
(w ■ ir/3» 
9 » TT/6) 

,- fee; {lfi-.-L\ -'4*10-1,3459 

Two ortho- 
gonally in- 
tersecting 
spheres at 
w * TT/2 

C,-4*M(l + tgl-Un»>-4«/« + *--™«^ 

The same, 
at equal 
radii of 
spheres at 
(w » TT/2, 
6 * TT/10 

C- 4KM(2- 111) - 4««'1,29» 

A spher- 
ical hole 
at the or- 
thogonal 
intersec- 
tion of 
spheres 
<<■> »  31T/2) 

C»»4*tt JJS1IV7.—£.4. ! x 

TM»;  uuino, 
at equal 
radii  of 
spheres 
(w »  3TT/2, 
6 « IT/4) 

C, « 4<M. 15. /1/3 +       4      _ -L\ _ 4««.0,W7» 
•    ^ 2 + 1/6        «j 
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Tab] .e  5-3  (Continued). 

Conductor 
Calculation formulas 

* o name diagram 

7 Spherical 
segment 
at GO = 
=  3TT/2   (6 = 
=  IT/2) 
(hemi- 
sphere) 

A»*? 
a* 

C, - 4ma.| /l --±J\ m 4»ia-0,8458 

Three  intersecting spheres   (Fig. 5-17). 

Fig. 5-17.  Conductor formed by 
the intersection of three 
spheres. 

If a conductor is formed by two identical spheres of radius a, 

intersecting at an angle of TT/3, and by a third sphere of radius bt 

which intersects each of the identical spheres at right angles, then 

\Vtfl + »     VW36» 

2ya»-M&«/J 
(5-21) 

At,   lfJfrillc.il   radii,  of all  spheres   (a = b) 

178 



Ct «=4«-a (f 2/5" 
3 

-Vl-^A -4na. 1,4839. (5-22) 

5. Ellipsoids. 

a) Triaxial ellipsoid (a > i > e) (Fig. 5-18) 

/•-Hf C.-4tt«a.r   v
fc/ , (5-23) 

where 

'-ää' •-«*"/R*7> 
'"(*)' 

Ff<j>, fej is an incomplete elliptical integral of the first kind 

(Appendix 1). 

If the semiaxes of an ellipsoid are equal respectively to a, 

a(l + a), a(l + a«ß), and |ot*31 < 1, then 

<V*4«a.[l + ~«(l+g)—jj'U-f + W]. (5-2*0 

Example 5-1. To determine the capacitance of a conductor in the 

form of a triaxial ellipsoid which is in distilled water (e ^ 83 eQ), 

if its semiaxes are respectively a *  10 cm; b  = 8 cm; o  = /2? cm. 

Using formula (5-23)> let us predetermine the modulus and 

argument o? an elliptical integral of the first kind F(<j>, k). 

At assigned dimensions 

i-fATP 

-(■SF 
«a  •     \ iU/     «a. 

l. 
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Fig. 5-18.  Conductor in the 
form of a triaxial ellipsoid. 

From the table of elliptical integrals we find that 

f(f.A)-F(w. VTO-1.099. 

Substituting the found value of F(<|>, k)   in formula (5-23), we 

obtain 

1/ ,_{!SY 
F = 835 pF 

b) Condensed spheroid (a = b  > o)   (Fig. 5-19) 

Cc»4irta /-w (5-25) 
■rccot- 

Fig. 5-19.  Conductor in the 
form of a condensed spheroid. 
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c)  A drawn out spheroid  (a  > b * a)   (Fig.   5-20) 

*-J3S. 
Arch JL 

(5-26) 

H 2*_* 

Fig. 5-20.  A conductor in 
the form of a drawn out 
spheroid. 

6.     Torus. 

a) Torus  of circular section1   (Fig.   5-21) 

Cts>8xs/ 

(5-27) 

*A more general case is that of a torus of oval section; how- 
ever, the calculation of the capacitance of such a conductor [5-6] 
requires preliminary tabulation of a number of special functions and 
that is why it is not considered here. 
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where 

J (eh.-f ,b«co»ß)' * 

J  (tha + sb«ch»   * 

are Legendre functions of the first and second kind (see Appendix 1), 

ch a - l/a. 

Fig. 5-21.  A conductor of 
toroidal form. 

The numerical values of function CQ/4^tl  = f(a/l)   are given in 

Fig. 5-22. 

The following approximation formulas can also be used: 

^mif'S^ (5-28) 

where K, K1, E, E* are complete elliptical integrals of the first 

21//* a* and second kind   (see Appendix  1)  with modulus   k=* .  r .-      ., 

|»<1S at a/f<Q,45j, 

C,=*4*t/ 5  (5-29) 
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(8 < 1 % at   all < 0,12: S < 4%  at a// < 0.30J. 
C,s* 4«/ (0,68 + 1,07a//) 
!3< IV at i//>0.30|. 

(5-30) 

I 0.05 0.10 O.IS 0.» 

4nf 0.616 0.72? 0.000 0.666 

(Continued) 

* 
t 0.8 0.30 0.35 0.40 

c. 
«or 0.831 0JS2 

1  
UBO um 

m 
I 0.49 jMO' 0.60 0.70 

4wl I.I« 1.216 1.38 1.4». 

( Continued) 

I+- 0.60 0.90 1.00 

1       «Ml 1.534 MM 1.741 

0?     04      Off     ol   a/l 

Pig. 5-22.  Graph for determining capacitance of a 
conductor of toroidal form. 

b) A torus without an opening (formed by the rotation of a 

circle around a tangent) (Fig. 5-23): 

C-=,6M|^^ (5-31) 

where IQ(x)t  KQ(x)  are Bessel functions of an imaginary argument 

(see Appendix 1). 

C8~4«a-1,7413528. (5-32) 
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r 

Fig. 5-23.  Conductor formed 
by rotation of a circle 
around a tangent. 

7. Cylinder  of finite   length   (Fig. 5-24) 

At 0 < l/a  <. 8 

C„ä 4*»a [0,6372+ 0,5535- (4")** 1 

1*<0.2%J. 
(5-33) 

The numerical values of the function CQ/4nza = f(l/a)  are given 

in Fig. 5-25. 

At   l/a  >  10 

4ztt c — 

At  l/a  >  50 
IK8-.J. 

fell 
c -. _ 
**•— ■"■■■— . 

a 

(5-3^) 

(5-35) 

Mee also clause 1 of § 3-2. 

Fig. 5-24.  A conductor in 
the form of a cylinder of 
finite length. 
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CJitM 

3fi 

* 

■ 

3   a! 
T 

. 

i 

« 
2fi 

2 

Ifi 

1 

as 

1        13        4.8        S        7        8       8    If* 

Fig. 5-25.  A graph for determination of the 
capacitance of a conductor of cylindrical 
form. 

1 
m 

0.000 0.1» 0.250 oaa 0J00 0.800 0.800 

4n« 
0.837SJ 0.781» otaot i i   0JU7T OJ641 1.0131 1.1050 

(Contln- -,ec'.) 

_l_ 1.0 t i i 100 

(ft* 
I.19U uua MW M3Ü 20.0 
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Table 5-4.  Upper and lower boundaries of capacitance of conductors 
In the form of regular polyhedrons. 

No. 
In order 

Conductor 

General form 

Boundaries of values of the 
quantity C^ • CQ/4i\ea   (CQ 

is the capacitance of the 
conductor; 4vea  is the capac- 
itance of a sphere of radius 
a, equal to the length of the 
edge of a polyhedron). 

Tetrahedron 

Cube 
(hexahedron) 

Octahedron 

Dodecahedron 

Icosahedron 

£ 
A— -j 

0.7« <d< 0,9038 

0,6393 < C, < 0.6675, 
C, a 0,65565 

0.591 < C, < 0.6327 

0,5049 < C, < 0,5627 

0,5036 < C, < 0.541» 
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8. Regular polyhedrons. 

Upper and lower limits of values of capacitances of conductors 

in the form of regular polyhedrons are given in Table 5-4.l The data 

of Table 5-4 are given in relation to the capacitance of a sphere with 

radius equal to the length of an edge. The length of the edge of 

polyhedrons can be calculated from their assigned volume or area of 

surfaces with the aid of the data given in Table 5-5. 

Table 5-5. Geometric parameters of regular polyhedrons 
of edge)• 

(a — length 

Name of Number of 
boundaries and 

their form 

Number Complete 
surface Volume conductor 

edge ver- 
texes 

Tetrahedron 4 triangles 6 4 1.7321 a2 0.1179 a2 

Cube (hexa- 
hedron) 6 squares 12 8 6.0 a2 1.0 a2 

Octahedron 8 triangles 12 6 3.4641 a2 0.4714 a2 

Dodecahedron 12 pentagons 30 20 20.6457 a2 7.6631 a2 

Icosahedron 20 triangles 30 12 8.6603 a2 2.1817 a2 

xIt is not without interest to observe the development of works 
on determination of the capacitance of a cube. There is an assump- 
tion [1-3], that the approximation value of the capacitance of a cube 
was known already to Dirichletj however, the main results on deter- 
mination of the capacitance of a cube were obtained only in the last 
two decades and are characterized by the following data: 

1. G. Polya, 1947-48 [5-7, 5-8], 0.622U < c, < o.r 105. 
2. G. Polya and G. Sege, 1951 [1-3], 0.632 < c, < 71055. 
3. T. I. Higgins and D. K. Reitan, 1951 [5-9], C, =. 0.6555. 
4. W. GrOSS, 1952 [5-10], C, « 0.6464; | C, - 0.64641« 0.032. 
5. R. I. Mc-Maxon, 1953 [5-11], C, > 0.639273. 
6. L. Daboni, 1953 [5-12], c, < 0.676. 
7. W. E. Parr, 1961 [5-15], C» <0.6675. 
8. I. Van Blade 1 and K. Mei, 1962 [5-16], C,» 0,65565. 

Comparison of these results leads to the data shown in graph 2 
of Table 5-4. 

Furthermore, the capacitance of a cube was evaluated in the 
works of L. E. Payne and H. P. Weinberger [5-13, 5-14]. 
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5-4.  Capacitance Between Two 
Infinitely Long Shells 

In the present section formulas, tables, and graphs are given 

for the determination of capacitance per unit of length of conductors 

that are infinitely long shells.  These conductors are: 

cylindrical shells of circular and an elliptical section; shells 

having in a section an equilateral triangle; shells of rectangular 

and square sections; shells of regular n-angular section; and circular 

and arched shells. 

1. Shells  of circular and elliptical  sections. 

a) Shells of circular section. 

Formulas for determination of capacitance per unit of length 

between infinitely long shells of circular section are shown in 

Table 5-6. 

b) Confocal shells of elliptical section (Pig. 5-26) 

r 2r.» 2n 

*     In     - 

where c* = of-&? = c|— 6». 

c) Coaxial circular and elliptical shells (Pig. 5-27). 

c        *u.K'(*) ,. (5-37) 

where K and K1 are complete elliptical Integrals of the 1st kind 

(;;ee Appendix 1) with moduli 

*Dir^inir and *-K»-#. 
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Table 5-6.  Formulas for determination of capacitance per unit of 
length between infinitely long cylindrical shells of a circular sec- 
tion. 

No. 
in order Location of shells Diagram Calculation formulas 

One of the shells 
is inside the 
other 

C- 2M 

Arch 
rB + gt-di 

2rR 

Shells are coaxial 
(cylindrical ca- 
pacitor) 

C- 2M 

In*- 
f 

One of the shells 
is outside the 
other C/- 

2M 

Arch *-<" + *? 
2rR 

The same,  as 
clause 3» with 
equal radii of 
shells ^e cr 

M 

Arch 
2* 

Two touching 
shells inside a 
third, the axis 
of which coin- 
cides with the 
line of contact 
of the first 
twi 

Two identical 
connected shells 
inside the third 
symmetrically 
relative to its 
axi:s 

Cjat 9M 

-.(4f) 

at   '*<*'. *<**. 
4M 

In—• 
rd 

<C,< 
In 

4M 

~W 
r.V# + 4i* 
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F(<$>,   k)   is an incomplete elliptical integral of kind I (see 
Appendix 1) with modulus k  and argument 

<p ** arcsi 

J/CTA4 
t 
k£i is; 

$ 

Pig.   5-26, Fig.   5-27. 

Fig. 5-26.  Confocal shells of ellip- 
tical section. 

Fig. 5-27.  Coaxial circular and 
elliptical shells. 

d) Off-axial circular and elliptical shells (Fig. 5-28) 

At p << a 

C,^ 2*« 

4p  *  ^U  "    l       chum       «h«i»|   J 
(5-38) 

wnere U-, = Arch a/a -  Arsh b/o3  a =  /a - b 3  and the quantities uQ 
and v0 are defined as the solution of the system of equations 

2jrt = cch|»0cosv0;   2yi = osh^sinv 

2.     Shells   having  in a  section an  equilateral   triangle   (Fig. 
i, _ • i«1v. >-<")). 
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Fig. 5-28. Fig. 5-29. 

Fig. 5-28. Coaxial circular and el- 
liptical shells. 

Fig. 5-29.  Infinitely long shells of 
triangular section b = a  tg 15° = 
= 0.268 a. 

Regardless of the dimensions of the sides 

C,-6«. (5-39) 

3. Shells  of rectangular and square sections. 

a) Rectangular shells with parallel sides enveloping each ther 

(Fig. 5-30). 

C1Ä4.[f + -£- + i-(lni^ + -Larctg-f + ^arctgA)]. 
(5-^0) 

b) Rectangular shells with parallel sides not enveloping each 

other (Fig. 5-31). 

The values of capacitance per unit of length of the conductors 

considered are given in Fig. 5-32. 

Numerical values are determined with error of the order of 1%. 

Example 5-2. To determine the capacitance C  between the sec- 

tions of two parallel bars far from ends and in ethanol (e = 26eQ) 

(Fig. 5-31), if a  ■ 2 cm; b  * 4 cm; d -  2 cm, and the length of 

section is I  ■ 5 cm. 
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if" 
==;> i 

J_ 
Pig. 5-30. Fig. 5-31. 

Fig. 5-30.  Coaxial rectangular shells 
with parallel sides. 

Fig. 5-31. Rectangular shells with 
parallel sides. 

ty/lxeOß 

a   t/a 

Fig. 5-32.  A graph for determining capac- 
itance per unit of length between two 
rectangular shells. 
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For assigned relations b/a  a 2 and d/a  ■ 1 with the aid of 

Pig. 5-32 we find the capacitance of the system per unit of length: 

C, « 4M0,90,35 - 3,96t. 

The capacitance between the sections considered is obtained by 

means of multiplication of the obtained value of C-,  by th length of 

a section 

C - <V a 3.9826 —~ .510-*=. 4,56- lO"" F 1 ^ pP. 

c) Square shells with parallel sides enveloping each other 

(Pig. 5-33). 

C, »8t 
<• 

(5-Hl) 

where Kn, KA are complete elliptical integrals of the first kind 
1 Z 

with moduli fe» and fe» *  /? - fe», respectively (see Appendix 1).  The 

,n2 modulus fe„ « (fej - fej/fej + fei) , and the parameters fe« and fej 

I - fe, are determined from the equation 

K(fe,), K(fej) are complete elliptical integrals of the 1st kind with 

moduli fe, and fej « // - fe., respectively (see Appendix 1). 

i. « . 

* ■"*■*" —• — — — — •— 

Pig. 5-33.  Coaxial square 
shells with parallel sides, 
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The dependence fe, = f(a/d)  is given in Fig. 5-3** 

so 

0,3 

as 

0,1 

,; ■— ■= 

— 

    — 

—   •— 

Kl 

0,5 it 

0,4 

«3 
i 

I            > 

«2 

011 

0 

.«. 

\i 0 6 a?            0,8           as         aid 

Pig- 5-3^.  Graph for determination of 
parameter fe, » f(a/d). 

aid 0.59WJ 0,00915 0.63108" 0.67923 6.71305 0.80597 0,80085 0.93872 

*■ 11.001 ' o.ci; 0,01 '1,05 O.I 0,3 0.3 0.6 

aid I.OIHBJ 1.1*911 1.2KM3 1,41.190 1.70311 2.0305« 2,1071 2,77361 

*. II.H 0.« O.'XgOS 0.97-17 >»,S»IW) O.BWlO n.SfWÄ D.9999C5 

Example 5-3. To determine capacitance per unit of length for a 

coaxial transmission system with square transverse section of central 

and external conductors (Fig. 5-33), if 2(a  -  d)   = 1 cm, 2a  = 4  cm, 

and the dielectric is air. 
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To determine the capacitance of the system we find the ratio 

-S-.-L.1.38 
4      1.5 

and with the aid of the curve of Fig. 5-31» we establish that 

j^-o,»; »;ryi_o,9* -o.a. 

Using the obtained values of k.  and fej, we obtain 

•/o.K-o.att', 
V>.96 + 0,2^ 

Prom modulus kQ  with the aid of Appendix 2 we find that 

&-0.61. 

and from formula (5-41) we obtain 

C, - 0,ei.8t, - 4>8^|0r> - 43,2 pP/m. 
30K 

d) Coaxial shells of the square section turned 45° relatively 
to each other (Pig. 5-35). 

At a  * b 

C,-b. (5-^2) 

4. Sheila of regular n-angular section   (Pig. 5-36). 

If the mutual location of the sections is such that their 

centers coincide, the middles of the sides of the external polygon 

are placed against the vertexes of the interior polygon, and further- 

more, the distance between these points is equal to bt  then 

Ci-2«. (5_43) 
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where n  is the number of sides of each polygon. 

Fig. 5-35. Pig. 5-36. 

Fig. 5-35. Shells of square section 
turned 45° relative to each other (b  = 
» 0.414 a). 

Fig. 5-36.  Shells of regular n-angular 

section (*"*flt*v) • 

5. Infinitely   long  oiroular and arched shells. 

a) Two coaxial arched shells of identical radius (Fig. 5-37) 

C,«-i-!ii(ctg-|- + j/^gTZZJ) (5-44) 

At low $ 

C^-L.ln-f. (5-44a) 

b) A circular shell and two interconnected identical arched 

shells coaxial with it (Fig. 5-38). 

Ci 
In 

2K« 

(5-45) 
r* V coif 
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] 

Pig. 5-37. Flg. 5-38. 

Pig. 5-37. Two coaxial arched shells 
of identical radius and length. 

Fig. 5-38.  A circular shell and two 
Intersected identical arched shells 
coaxial with it. 

5-5.  Capacitance Between Infinitely 
Long Shells and Plates 

In the present section formulas, tables and graphs are given 

for determining the capacitance between conductors that are infinitely 

long shells and plates. 

They include a plate inside a shell of circular section; a 

plate outside a shell of circular section; a plate Inside and out- 

side a shell of elliptical section; a plate inside a shell of 

rectangular section; a circular disc and cylindrical shell of 

circular section. 

1. A plate inside a shell  of circular section. 

a) General case (Pig. 5-39). 

Cj «» •« 
2c 

In I ' (5-46) 

where the parameter q(0 < q < 1)  is determined from the formulas 

(4-49) and (4-50), in which the quantity X is replaced with 
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and a  « 2R  sin <}»/2. 

Pig. 5-39. A plate of finite 
width inside an infinite 
shell of circular section. 

The numerical values of the function C,/e » /CXp-' are given in 

Fig. 5-40. Values of X2 depending on b/d  at various a/d  are given 

in Pig. 5-41. 

b) The plate is inside a shell in a plane passing through its 

axis. 

The formulas for the determination of capacitance per unit of 

length between the conductors being considered at different relation- 

ship of their sizes are given in Table 5-7. 

c) The plate is between two interconnected concentric circular 

shells (Pig. 5-^2). 

At R    m r-R/R. 

(5-47) 

where K and K' are the complete and supplementary elliptical integrals 

of the first kind (see Appendix 1) with modulus K ■ fe«sn [pK'(fe), fe'] 

sn x  is an elliptical sine (see Appendix 1), and 
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1 

and fe is determined from a transcendental equation 

K(*)   2=   r 

2.  Plate outside Bhell of circular section. 

a) The general case (Pig. 5-43). 

^••"T^ (5-^8) 

where the parameter q(0 < q < 1)  is determined from the formulas 

(1-49) and (4-50), in which the quantity X is replaced with 

and a - 2Ä sin 0/2. 

The values of A- depending on b/d  at various a/d are given in 

Pig. 5-44. 

At b =  « (shell and half-plane) 

/2 
Numerical values of C, are found with the aid of the graph 

given in Pig. 5-40. 

203 



Fig. 5-4.3. Circular shell 
and plate of the finite 
width outside it. 

a       at 

* 
to 

i \, 

Qß 
SJ1I 

5   10 20   SO 
1      I 

too 
1 

I 
/     / / 
f     / 

/ qs 

0,1 

■ 

• 

3 i i       4 t i      i \       a 9          1 ?          * *    vk 
Fig. 5-44. Graph for the determination 
of the parameter X- necessary?in calcula- 

tion of capacitance between a circular 
shell and a plate of finite width outside 
It. 

b) Shell in the cut of an infinite plane (Fig. 5-45). 

C,B|> 

»Y (5-49) 

where the parameter q(0 < q < 1)  is determined from the formulas 

(4-49) and (4-50), in which X is replaced tjy 
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'.VRJFS" 
and a « 2i?*sin <{>/2. 

Fig. 5-45. Circular shell in a 
cut of an infinite plane. 

The values of Xu  depending on a/&1  at various a/d«  are given in 

Fig. 5-46, and the numerical values of capacitance per unit of length 

are found with the aid of the graph given in Fig. 5-40. 

c) Plate in plane passing through axis of shell. 

The formulas for the determination of capacitance per unit of 

length between the conductors being considered at different relation- 

ship of their sises are given in Table 5-7 (see clause 1 of  the 

present section). 

3. Plate and shell of elliptical section. 

a) Plate inside shell (Fig. 5-47). 

If the edges of the plate coincide with the foci of an ellipse 

(c-J/tf-*»),• then 
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14    a/<tt 

Fig. 5-46. Graph for determination of the 
parameter Aj. necessary during calculation 

of capacitance between a circular shell 
and infinite plane, in the cut of which is 
a shell. 

Pig. 5-47. Infinitely 
long elliptical shell and 
plate inside it. 

b) Plate outside shell. 

Formulas for determination of capacitance per unit of length 

between conductors considered are given in Table 5-8. 
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4. Plate  inside a shell of rectangular eeotion   (Fig. 5-^8). 

c,-2..A. (5-5D 

where the modulus of the complete elliptical integral of the first 

kind KQ (see Appendix 1) is 

.1      2I«l(Mj. ») — m{ut, k)\        . 

*  (1 + ■{■» *)Mi-«i («„*)! 

«i-(l-2-f)K. «,-(I-2^)K. 

Pig. 5-*»8. Infinitely long 
elliptical shell and plate 
inside it. 

The modulus fe of an elliptical integral K and functions sn (u, fe) 

(see Appendix 1) is found from the equation 

I   K  •   * 

or directly from the formula 

•-*Ä(Ä£f. «>4 

(The quantity fe can be found from the assigned ratio h/l  with the 

aid of Appsndix 2). 

At the symmetric location of a plate (Pig. 5-^9) 
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..■. mmmmmm HVVmRW^RIBBn.'« g-^-:jJWLL i'JUIfm 

(5-52) 

where *t=sn(-j-K; *].   and modulus fe is defined just as above, 

JT 

'1 
Pig. 5-^9. Shell and plate 
symmetrically arranged in- 
side it. 

When the section of the shell has square form, the formulas for 

calculation of capacitance between the conductors being considered 

take the form shown in Table 5-9. 

Example 5-4. To determine the capacitance per unit of length 

of the system shown in Fig. 5-48, if h/l  = 0.78; d/l  = 0.19; 

d + h/l "  0.40, and the dielectric is air. 

Solution. From the assigned ratio h/l  « KVK = 0.78 with the 

aid of Appendix 2 we find that k2  = 0.75; K = 2.16. 

The values of elliptical sines which enter formula (<-5D can 

be calculated directly from their tables, short extracts from which 

are giver, in Appendix 5, or from tables of elliptical integrals. 

Let us make use in this case of the latter method. 

Calculating the arguments of elliptical sines, we have: 

«,« (1-2-0.19).2,16 v 2,3«; 

»a - (1 - 2.0,40)2, I* - 0,41 

Turning then to the table contained in [Appendix 5], we find 

that at u1  = 1.34 and k2  = 0.75 amplitude ^ ^ 65°. Analogously 

<t>2 1 
22|°- 
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Table 5-9.  Formula for determination of capacitance between a shell 
of square section and a plate inside a shell in the plane of its 
symmetry.  

No. in 
order Location of plate 

Plate is in the 
plane of symmetry 
passing through the 
middles of the 
opposite sides of a 
shell 

The same, as in 
clause 1, with 
symmetric location 
of plate 

Plate in diagonal 
plane 

Calculation 
diagrams 

 I 

mi 

Calculation formulas 

C-2..-2- 

where 

[> + M(I»1;VM)]X 
x[l-«n(ai;KM)J. 

«.-(»-af)-K(Kw). 
K(yUl)-1.85407. 

«,-(l-2i±i).K(3^8). 

sn(w, fej) is an elliptical 

sine (see Appendix 1) 

C,- 4«. —. 

where 

»-•n[K(V^5)'-J-lV^»] 

Cj - 2«. -ML 

where 

en («,; V'O.S). [2-en («j; l^Ojg)] 

«;-VT.K(VM).-1, 

V?. K(Vo^)-2,62ao#, 

^-v?.ic(yöi).^. 

cn(u, fej) is an elliptical 

cosine (see Appendix 1) 

2i: 



On the basis of formula sn u  » sin <J> we have: 

W «i- sin 65» -0,906; 

so«,-sin 34*-0.407. 

We find then the modulus kQ  of elliptical integrals 

4 2(0.»»+ 0,407)  _ 
^ (1+0,906) (1+0,407)  * 

Then KQ * 3.336, K£ ■ 1.579 and using formula (5-51) we obtain 

C, - 2.S.85.10-»- -Jig. - 37.4 pP/m. 
. 1,57» 

: ! 
5. Circular disc and cylindrical  shell  of circular section. 

a) The shell is infinitely long and coaxial with the disc 

(Pig. 5-50). 

jfjfji Fig. 5-50.  Circular disc in- 
jgj_       slde infinitely long shell of 

__  circular section. 

The numerical values of the function C/4-nza"0.9 ■ f(R/a)  are 

given in Fig. 5-51. 

b) The shell is closed and is coaxial with the disc (Fig. 5-52) 

The numerical values of the function C/4-nta'Q.S  ■ f(R/a)  at 

various l/a  are given in Table 5-10 and in Fig. 5-53. 
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C/4nta-Oß # 

3.0 

2.S 

2.2 

1.8 

t.4 

1fi 

06 

I 
1 

«    HS      ■ }| 
/i 

0 4 t a *     Ci *   l 0 4/« 

« «.1 0* 0.» 0.4 

c 
0.07300 0.159*8 0.35581 0,36389 

Ana 0.9 

m «3 0.« o.? 

«." 
0.49M3 0.«S8I7 0.865« 

4rm0.9 

• fct o.t 0.« 

c 
I.U531 

«oa-O.« 
1,6488 I.W» 

Fig. 5-51. Graph for determination of capaci- 
tance between an infinitely long shell of cir- 
cular section and a circular disc inside it 
(dotted line — extrapolation). 

Pig. 5-52. Circular disc in- 
side a closed shell of circular 
section. 

Table 5-10. Values of capacitance between a 
closed shell of circular section and a cir- 
cular disc inside it. 

c Maximum 
absolute 
error 

c 
45IO-0.9 

Maximum 
absolute 
errorf 

c 
4«a."55 

Maximum 
absolute 
error 

R 
a 

4sta.0.» 

l.a - 0.2S I/o-0.5'     * //a -1,0 , 

0.25 
0.50 
0.7S 

0.2848 
0.8447 
1,7615 

0,00002 
0.0006 
0,0037 

0,2251 
0,5790 
1,1563 

f 
0.0003 
0,006? 
0,036| 

0,2072 
0,5042 
1,0050 

0,0020 
0,048» 
0,1948. 
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txt«g$ 

Fig. 5-53. Graph for deter- 
mination of capacitance be- 
tween a closed shell of cir- 
cular section and a circular 
disc inside it (dotted line - 
extrapolation). 

o <D5 S3 m *k 
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5-6. Capacitc Capacitance of Closed Shells 

In the present section formulas, tables and graphs are given 

for the determination of capacitance between conductors, at least one 

of which is a closed shell. 

The surfaces of conductors considered below are spheres (one 

of which is inside or outside the other); confocal ellipsoidst 

coaxial tori of circular section. 

A separate group is made up of the systems formed by a sphere 

or by a spheroid inside shells or near infinite planes. 

1. Two  spheres. 

a) Two concentric spheres (spherical capacitor), (Pig. 5-51*) 

C-*».-^-. (5-53) 

Pig. 5-51*. Two con- 
centric spheres. 

b) Two conconcentric spheres one of which is inside the other 

(Pig. 5-55). 

C«4Kt 
**S '-«-'■""■•• (5"5} 

where 

«." Arch      "-        , 
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ra pTBBWBOMpt«. W^Ü'JJBKJ5LU_J... 

At   -f«1«!"«1 

C=*4s« rÄ Ti-f.  * 1 
Ä-rf 

I« < 0,2% when   ~<f/r < 0,04, rlR <0.2]. 

(5-55) 

Fig. 5-55.. Two non- 
concentric spheres one 
of which is inside the 
other. 

c) Two spheres, one of which is inside the other (Fig. 5-56). 

C - 4nt-rA.sua-/(f, R, d), (5-56) 

where 

fir. R.d) 
y ■ '     +M-. 
j£J   ßthm-t rth(n —I)« 

^i Äsh/io + r»h (B— I)« 

Al = 

Specifically, at r » /? 

where 0 s Arch ^. 

rshna-f #sh(a — l)a       <f-tbn« 

;-taR*^3W- 
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Pig. 5-56. Two spheres 
one of which is outside 
the other. 

The numerical values of the function jrjp ™/(-jr) at various values 

of R/2d  are given in Pig. 5-57. 

Ctaft 

0     Of    Oi   OS    04    05    Oß Qfi    (&  rf* 

Fig. 5-57. Graph for determination 
of capacitance between two spheres, 
one of which is located outside the 
other (dotted line - extrapolation). 

At  li/fld «   1 

C=4K*- 
rR 

r+R 
I 

j !_     rR 
d    r + R 

\\l\ =• 0,73%   when RI2d =. r/R - 0.2|. 

(5-57) 
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When R/2d <<  1 and r « R 

c^J^L 
i~* 

(5-57a) 

I» < 0.24K when RIU < 0,21. 

2.  Two oonfooal ellipsoids. 

a) Triaxial ellipsoids (Fig. 5-58): 

4**i 
'ifefa 4-'•«!** 

(5-58) 

where F(4>, fe) are elliptical integrals of the first kind (see 

Appendix 1) with modulus 

*« = 

and arguments 

Yi a arcsin /•-(*;. -ii—i./j-(A)r. 

and 

d«l/'oj-c»- K«5-4. i«> *>«I. 

Example 5-5. To find the capacitance of the air capacitor 

formed by confocal triaxial ellipsoids the semiaxes of which are 

a, * 5 cm; fe, ■ 3 cm; <?, ■ 2 cm; a2 ■ 7 cm; 2>2 ■ /33 cm; <?2 
= •^ cm< 

Fig. 5-58. Triaxial 
confocal ell.lpr.o1ds. 
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To determine capacitance it is necessary to find in advance the 

values of the elliptical integrals F(<|>, fe). We first compute their 

modulus fe and arguments <f>, and <J>2: 

I -ffl '-(T)' 

* - ,rcsln j/ |—(T)' - 6W 

H - arcsin l/ t- (^-J   - «"«T. 

Using then table [Appendix 4], we obtain 

*i (?. A) - 1.3954; F,fa k) - 0,7831 

Substituting in formula (5-58) the numerical values of the 

parameters entering it, we find the sought capacitance 

■tf-fe, i  =,*:.   l 

X V*-»'*'*   = 0.8054 • 10-" * « 8 pP. 
1.3954-0.7632 ^   H 

b) Drawn out spheroids (Pig. 5-59): 

fei-4'. 

i„|£i±i. &nil * 
«I —4    a,+ 4 

where   d= j/dj-$ « V^-i !«-*<* 

c) Condensed spheroids (Pig. 5-60): 

whore 
arccos —— arccos -St 

a, o, 

rf=,|/a»-c»«]/a*-c» |a«6>cl. 
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Pig. 5-59. Drawn out 
confocal spheroids. 

Fig. 5-60. Condensed 
confocal spheroids. 

3. Coaxial tori of oiroular section  (Pig. 5-6l). 

C = Ar.Ud 

In- MSH'-£+»fhi)]- (5-61) 

(nTm 
JL 

Pig. 5-6l. Coaxial 
tori. 

Having found capacitance per unit length (by dividing by 2ird) 

and having approached Infinity, for two concentric circular cylinders 

we obtain C= 2"*- , which coincides with formula 2 of Table 5-6. 

-f 
4. Sphere inside a cube  (Pig. 5-62). 

Ar.»R 

I-[1.7478+ l64W   1 A 

I . (f)*-H 
(5-62) 

At a/R  > 2.5 the capacitance of the system considered can be 

calculated as the capacitance of a spherical capacitor (see 5-53), 

the radius of the external plate of which is equal to 0.5722 a. 
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Fig. 5-62. A sphere 
inside a cube. 

wh 

5. Sphere  inside an infinitely   long cylinder   (Fig. 5-63). 

0 = 4«/?./* (5-63) 

ere AQ  is determined frr>m the infinite system of equations: 

where 

(2p)l 

«P + Ufi* 
•i4^— 

j*_\* (~l)"*PRUJ&±** a> A   -&. 
- y'(4n + l)(2n + 1p + l)(?n)l        u      R* 

m 

IQ(ta)  -  the Bessel function of an imaginary argument (see 

Appendix 1). 

j-.p. if 2p+0; 
I I. if 2p«0. 

F^I Fig. 5-63. Sphere 
inside infinitely 
long cylinder. 

The numerical values of the function     —/(ft/a) is given 
4sM*Q»> 
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in Pig. 5-64. The following approximation formula can also be 

used: 

C « 4«/? ll + 0,8707 -J- + 0,7581 (-§-)' + 

+ 0,6601 (-£)' + 0,5747(4)* + °*»«(T)] 

|*<H4 when/?/«< 0,5|. 

(5-61) 

C/txtaOJ» 

Bft 

—- 

70 slß fc^          l 
% §|5 *            1 

fffl • 

4* 

/ 
■ / 
4* J **< » 

V 
/ 

*< rl 
X 

4 i   4 i i * i *** 

if 
0.1 0.» OJ 0.1 

c 
0.I2IM 0.30M5 0.481*3 0.4*306 4<u4-0.» 

g 
• 0.1 0.« 0.T 

C 
0.0O8« i.mm MC30 

4U4I-0.S 

0.8 0.0 a.» 

c 
3.0HU 

4M*0.9 
S.4IMI 0,70574 

Fig. 5-61. Graph for 
determination of the 
capacitance of a sphere 
inside an infinitely 
long cylinder. 

6. Spheroid inside infinitely   long cylinder   (Pig. 5-65). 

The numerical values of C/kvza'0.9  - f'b/a)  for two values of 
b/o  are given in Pig. 5-66. 

Pig. 5-65. A spheroid 
inside an infinitely 
long cylinder. 

223 



r 
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drawn 
ortoa 

0.1 O.f «•.3. I'.« 

U.I65I6 0.3i7C0 0.653M 1.02710 

•     C 

0.0*16 0.21517 0.35318 0.52120 «r:o-0.9 
condtns. 

(2.1) 

•/« 0.5 0.« 0.7 

C 

I.53Ü58 7.3(18] 3.37» 4r a(1.9 
drawn 
out   <I2) 

C 

0.73238 1.01033 1.40331 (rinO.O 
condens. 

(2 11 

»/« 0.» 0.9 0.95 

C 
L*    M - - 4ci«-0.9 

drawn 
out  (|'.J) 

C 

».03239 !  4rta0.9 
| oondanst 
|      42/1) 

3.36752 5.1468 

42 53 «5 04 bfa 

Fig. 5-66. A graph 
for determination of 
the capacitance of a 
spheroid inside an 
infinitely long cylin- 
der: 1 - drawn out 
(the ratio of axes 
1/2); 2 - condensed 
(ratio of axes 2/1); 
dotted line - 
extrapolation. 

7. Sphere inside flat ring   (Pig. 5-67). 

Fig, 5-67. Sphere 
inside flat ring 
("ring of Saturn"). 

At 1.5 < b/a < <» 

1 dn» | arccos —\ E — *cn» (arcctjf ]/*){ 
(5-65) 
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where sn u, en w, dn u  are elliptical functions (see Appendix 1); 

*-(*;■ 

The numerical values of function C/knia ■ f(R/a)  are given in 

Pig.  5-68.   . 

c/4xfa4$ 

is 1 
J / 2ß i 

y 
Ufi 

y / 

< 1      c > t 4     ^ <U     4 8    K/t 

« 0.42 O.BI 0.71 P.» 

C    . 
0.62 i.a 1.76 2.M 

■ 
4ria0.9 

Fig. 5-68. Graph for 
determination of the 
capacitance of a sphere 
inside a flat ring (at 
b/a  > 1.5) (the 
dotted line - extrapola- 
tion) . 

I 

8. Sphere between infinite planee   (Pig. 5-69). 

Fig. 5-69.  Sphere 
between infinite 
planes. 

At R/h  not too close to 1, 

where p ■ j-  In 2. 

(5-66) 
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At values of F/h  comparable with 1, 

A — R 4 (5-67) 

The approximation numerical values of the function <7/4irei? 
f(R/h)  are given in Pig.   5-70. 

C/4xtft 
— — 

-! ?5 I ■ 
21 i 

i 
i 

u - s -®— 1 
1 

ts 
i i 

, 
90 M 
so / ! 

i i 

tfl —- J i 
i 1 
i 

0 a ? 04 0 6 4 » t ijh 

Fig. 5-70. Graph for 
determination of the 
capacitance of a sphere 
between infinite planes 
(dotted line - 
extrapolation). 

I 
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APPENDIX 1 

SPECIAL FUNCTIONS USED TO CALCULATE 
ELECTRICAL CAPACITANCE 

1. Elliptical  integrals, 

The integrals 

ffr,*)- f .  *     £(?. *)= \Vl-**«in**dfc 
J Vl-tfsln**        J , 

ff(T, «. ft) » f * 
J (1 + nsin*tyV l-ft»sin*4» 

(1) 

are called incomplete elliptical integrals of the first, second, 

and third kind, respectively. The quantity <J> is called an argument 

or amplitude, n a parameter, and k  a modulus. 

The number # -Vi-*« is called a supplementary modulus, and 

integrals (1) with modulus fe' are called supplementary integrals. 

Frequently the quantity a = arc sin k  is introduced, which is called 

a modular angle. 

At <j) *>  w integrals (1) are called complete elliptical integrals 

and are labeled 

sin* {iffy; K-KW- f 7  J    ; E-E(*)=fVl-A* 
J Kl-**sin«f J 

nfn. *)- l 7^ 
J (l+nsln»^)V l-ft*sln»+ 

(2) 

227 



Complete supplementary elliptical integrals are frequently marked 

with a prime 

K'- K(*'); E'-E(*'), IT (it, ty-ilfo *). 

For the most frequently utilized complete elliptical integrals 

of the first kind the following expansions are valid: 

(is used when k  <<  1); 

(is used when k -  1). 

More detailed information about elliptical integrals is given 

in [Appendices Literature 1-3]. 

The tables of values K,  K'   and also K'IK  and K/K'   are given 

in Appendix 2. More complete tables of elliptical integrals of the 

first, second, and third kind are contained in [Appendices Literature 

i|], and also in [Appendices Literature 3, 53. 

2. Eli- ptical functions  of Jacoby. 

The function opposite to the elliptical integral of the first 

kind is called an elliptical sine and is designated 

«n« 5 sn (u, ft) =» »in? =* sintmii. 

Tl.3 overhead limit <f> of an integral is called amplitude, and 

the quantity it is called argument. The dependence of an argument 

up "»r amplitude is written: 

The functions 

u = srg<?. 

en u = cos ? «■ cos amu, 

dn u = V \ — ** sin» ? = -& 
du 
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By definition 

sn*«-f cn*tf = 1.   dn* u -|- ft* sn*u «• I;   do1« — ft* en* u =■ *':. 

For elliptical functions the following ideas in the form of 

exponential series are valid: 

i + ft»   . ,   i + Hft* + k*   . sn u - u — u* H -—■ a» 
3! 51 

1 + 133(ft* + *)-(-».,, , 
7! 

1     , ,    I -f- 4ft*    .      1 + 44ft* + 16ft«  « , 
en a = I «H - «* ■ 1—«•+■ ... 

2! 41 6! 

A ••**,.   ** (4-*-**)    -      ft*(16 + 44ft*-f *•>   * ,   ■ dn u =• I H* H 5—-—- «• 5 !—*• «• + . 
21 41 6! 

(5) 

The zeta-function of Jacoby is determined as an expression of 

the form 

Ztf. *)-£(?. *> jj-^r. *). (6) 

where 

p - arc sin 

More detailed information about elliptical functions is con- 

tained in [Appendices Literature 2, 3, 6]. Short extracts from the 

tables of elliptical functions are given in Appendices 3 and H.     More 

detailed tables of functions sn u, en w, dn u  are given in [Appendices 

Literature 8], Part II, and of function K«Z(0, fe) in [Appendices Lit. 3]. 

The graphs of the values of elliptical functions at three different 

values of modulus are given in Appendices Pigs. 1, 2, and 3. 
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3. Theta-function. 

Theta-function is defined as the sum of the series1 

8, (Jt) =» 1 — 2? COS 2r.x + 7q*'cos 4si — 2q*cvi <fe* + . . . 
...+(-I)"«"*cos2«tt+.... (7) 

where 
K' 

The theta-function depends on two parameters - the argument x 

and the modulus of elliptical integrals fe since the latter determines 

the values of q. 

When q  is close to'one the expansion takes place 

+$' * ch(2n 

where 

The short table of values of function ••(*) is given in Appendix 5. 

A graph of dependence of the parameter q  upon k    is given in Appendices 

Fig. 4, and the values of function In — -/<*') are given in Appendices 

Pig. 5. 

4. Beasel functions. 

Linearly independent solutions of the Bessel equation of zero 

order 

tPu   ,   1 du ,   n 

« « -»■'9- + l)jt'+...J, (8) 

'The given expression defines only one of the four introduced 
Jacoby theta-functions; for more detail see [Appendices Literature 
2, 6]. 
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+ ... (9) 

(Bessel functions of the first kind of zero order) and 

*iÖ(-i+-8-4 (10) 

where y  = 0.5772157 is the Euler constant (the Bessel function of the 

second kind of zero order). 

The function 

»i''W-/,(*) + /#,» (11) 

is called the Bessel function of the third kind or the Hankel function, 

During calculations frequent use is made of the functions IQ(B) 

and KAz)s  connected with JQ(Z)   and Hl(?,)  by the dependences 
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M«Wo</*); \ 
(12) 

Functions !«(«) and #0(a) are called the Bessel functions of an 

imaginary argument or the modified Bessel functions of zero order. 

The function KQ(z)  is known also as the MacDonald function. 

Bessel functions are the topic of vast literature (see, for 

example, [Appendices Literature (AL) 1, 7,9])» and they are completely 

comprehensively tabulated [AL 5» 9, 10] (in [AL 8] the information 

about tables is given). 

5. Legendre functions  of the first and second kind. 

In the book Legendre functions with coefficient, equal bo half 

of an odd integer are used.  These functions are linearly independent 

solutions of the equation 

da* +
 clh«A_/«t_J.NBÄo (13) 

and have the form 

P     i (cha)«*— l, 
-+T 

*+ 

-4-r  * „■■ 
J    (cha + she COS?)      * 

m 

^(cha)«  C 4L- _p. 
* J    icha + shach?)      * (11) 

At n  = 0 and n = 1 the Legendre functions are expressed through 

complete elliptical integrals of the first and the second kind (see 

clause 1 of this Appendix). 

(15) 

where the modulus is 
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J + ctb« 
, ft»«Vi_*i. 

More detailed information about the Legendre functions is given 

in [AL 6, 8, 11], and tables of the functions with coefficient equal 

to half of an odd integer are contained in [AL 12]. 

6. Pei-funetion. 

The function i|*(s) is the logarithmic derivative of a gamma 

function 

*w- (16) 

where 

m 

0 

The function ty(z)  satisfies the following functional 

relationships: 

1 ♦ (* + U = 7 ++W: 
4» <I -— *)—Ma) = *ctg«a; 

♦ W + ♦(* + 4) + 2,n2 - 2*<2Z>- 
(17) 

Computation ^(a) at special values of z  can be carried out 

using the formulas: 

* 
|(n+ !) = _,+ y-; n =1.2; — I 

■ (18) 

More detailed information about psi-function is given in [AL 8, 

11].  The table of values i|>(l + x)  is given in Appendix 6. 
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7. The  zeta-function of Riemann. 

The zeta-function of Riemann for Re a > 1 is determined by the 

formula 

cw> (?-Or (4 
*. (19) 

where T(z)  is a gamma function (see clause 6 of this Appendix). 

A zeta-function satisfies the following functional relationships 

2*r<l -*) C (I - *)sin — = K«-'c(*). 
2 

2'-*r (i): w cos y - s*; <i - ** 

rfjjr^w-r^jrrcci-* 

(20) 

Computation of c(a) at Re a > 1 can be carried out using the 

formula 

s> cw-V-V (21) 

More detailed information about the zeta-function of Riemann 

is given in [AL 6], 

The table of values of ?(a:) is given in Appendix 7. 
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APPENDIX 2 

THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND 

K(ft)= K = 
J yi-Aäsin«t{. 1 V 1-ft'sin** 

»'= Y\~tfi * 
/ 

/ 

*• K *'. K'/K K/ie (*')• 

0,00 1,57080 00 00 0.00000 1,00 
.0.01 1,57475 3,69564 2,34682 0,42611 0.99 
0.02 1.57874 3,35414 2,12457 0.47068 0.98 
0.03 1.58278 3,15587 1,99388 0,50153 0.97 
0,04 1,58687 3.01611 •   1,90067 0,52613 0.96 
0,05 1,59100 2.90834 1.82799 0,54705 • 0,95 
0.06 1,59519 2,82075 1.76828 0,56552 0.94 
0,07 1,59942 2,74707 5,71754 0.58223 0.93 
0,08 1,60371 2,58355 1,67334 0.59761 0,92 
0,09 1,60805 2,62777 1,63414 0.61194 o.r: 
0,10 1,61244 2,57809 1,59887 0.62544 0,90 
0,11 1,61689 2,53333 1.56680 0.63825 0,89 
0,12 1,62139 2,49264 1.53734 0,65047 0,88 
0.13 1.62595 2.45534 1,51009 Ü,66221 0.87 
0,14 1,63058 2,42093 1,48471 0,67353 0.86 
0,15 1.63526 2,38902 1,46094 0,68449 0.85 
0.16 1.64000 2,35926 1,38258 0,69513 0.84 
0.17 1,64481 2,33141 1,41744 0.70550 0.83 
0,18 1,64968 2,30523 1,39738 0.71562 0.82 
0,19 1,65462 2,28055 1,37829 0.72553 0.81 
0.20 1,65962 2,25721 1.36007 0.73526 0,80 
0.21 1.66470 2,23507 1,34262 0.74481 0.79 
0.22 1,66985 2,21402 1,32588 0.75422 0,78 
0.23 1,67507 2,19397 1,30978 0,76349 0,77 
0.24 1,68037 2,17483 1.29425 0,77265 0.76 
0,25 1.68575 2,15652 1.27926 0,78171 0.75 
0,26 1.69121 2,13897 1.26476 0.79066 0.74 
0.27 1.0%75 2.12213 1,25070 0,79955 0.73 
0.28 1.70237 2,10595 1,23707 0,80836 0,72 
0.29 1.70809 2,09037 1,22381 0,81712 0.71 
0.30 1.71389 2,07536 1,21091 • 0,82583 0.70 
0,31 1.71978 2.06088 1,19834 0,83449 0.69 
0,32 1.72577 2.04689 1,18607 0,81312 0,68 
0.33 I.73186 2.03336 1.17409 0,85172 0,67 
0,34 1,73805 2,02028 1.16238 0,86030 0.66 
0.35 1.74135 2,00760 1.15091 0,86887 0.65 
0.36 1,75075 1,99530 1.13986 0,87744 0,64 
0,37 1,75727 1,98337 1,12867 0,88000 0.63 
0.38 1,76390 1,97178 1,11786 0,89«7 0.62 
0,39 1,77065 1,96052 1,10723 0,90315 0.61 
0.40 1,77752 1,94957 1,09679 0.91175 0.60 
0.11   ' 1.78452 1,93891 1,08652 0,92037 0,59 
0.42 1.79165 1,92853 1,07640 0.92903 0,58 
0.43 1,79892 1,91811 1,06612 0.93771 0,57 
0.44 i,a«;i3 1,90855 1,05659 0,91614 0.56 
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Continued. 

*■ K K' K'/K K/K' (**!• 

0.45 1.81388 1,,J892 1,04688 0,95522 ' 0.55 
0.46 1.82159 1.88953 1,03730 0,96404 0.54 
0.47 1.82946 1,88036 1.02782 0.97293 0,53 
0,48 1.83749 1,87140 1.01845 0.98188 0.52 
0.49 1.84569 1,86264 1,00918 0.99090 0,51 
0.50 1.65407 .1.85407 1.00000 1.00000 0.50 

Values of modulus close to 0 and 1 

0,000001 1,57080 8,29405 5,28016 0.18939 0.999999 
0.000002 1,57080 7.94748 5,05952 0,19765 0,999998 
0,000003 1,57080 7.74475 4,93046 0,20282 0,999997 
0,000004 1,57080 7.60091 4,83888 ' 0.20666 0,999996 
0.000005 1,57080 7,48934 4,76786 0.20974 0,999995 
0,000006 1,57080 7,39818 4,70982 0.21232 0.999994 

' 0.000007 1,57080 7.32111 4,66075 0,21456 0.999993 
0.000008 1.57080 7,25434 4,61825 0,21653 0.999992 
0,000009 1.57080 7,19545 4,58076 0,21830 0.999991 
0.000010 1.57080 7.14277 4.54722 0,21991 0,999990 
0,000100 1,57083 5,99159 3.81427 0.26217 0,999900 
0,000200 1.57087 5,64512 3,59362 0,27827 0,999800 

• O.OOOGOO 1,57091 " 5.44249 3,46454 0,28864 0.999700 
0,000400 1,57095 5,29875 3,37295 0,29648 0,999600 
0.000500 1.57099 5,18727 3,30191 0,30286 0,999500 
0,000600 1,57103 5,09620 3,24385 0.30828 0,999400 
0,000700 1,57107 5,01921 3,19477- 0,31301 0,999300 
0,000800 1.57111 4,95253 3,15225 0,31723 0,999200 

■ 0.000900 1.57115 4,89373 3.11474 0,32105 0.999100 
0,001000 1.57119 4,84113 3,08118 0,32455 0.999000 
0,001100 1.57123 4.79356 3,05084 0,32778 0.998900 
0,001200 1.57127 4.75014 3,02312 0,33078 0,998800 
0,001300 1.57131 4,71020 . 2,99763 0,33360 0,998700 
0,001400 1.57135 4,67322 2.97402 0,33624 0.998600 
0.001500 I.57139 4,63880 2,95205 0,33875 0,998500 
0,001600 1,57142 4,60661 2,93149 0,34112 0.998400 
0.001700 I.57146 4,57638 2,91217 0,34339 0,998300 
0,001800 1,57150 4,54788 2,89396 0,34555 0,998200 
0,001900 1.57154 4,52092 2,87674 0,34762 0.998100 
0,002000 1.57158 4,49535 2,86040 0,34960 0,998000 
0.002100 1.57162 4,47103 2.84485 0,35151 O.99790O 

" 0.002200 1.57166 4.44784 2.83002 0,35335 0,997800 
0,002300 1.57171 4.12569 2.81586 0.35513 0,997700 
0,002100 1.57174 4,40448 2.80231 0,35685 0,997600 
0.002500 1.57178 4,38414 2.78929 0.35851 0,997500 
0,002600 1.57182 4.36161 2.77679 0.36013 0.997400 
0.002700 1,57136 4.31581 2.76476 0.36170 0.997300 
0,002800 1.57190 4.32769 2.75317 0.36322 0.997200 
0.002900 1.57194 4,31022 2,74198 0,36170 0.997100 
0,003000 1.57198 4.29334 2.73117 0,36614 0,997000 
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APPENDIX  I* 

FUNCTION  XZ(ß,   k) 

! 

«-1° a - 15° a -30' a - 45° « - 60' o-75' «-*»» 
&• 

»•-0,00030 »•..0,0»:;* **- 0.25000 A1-0,50000 *• - O.7JO00 *' - 0.93301 «»..0.99970 

0° 0,000000 0.000000 O.OOCOOO O.OOOCCO O.COCCOO O.COCCOO 0.000000 
5° 0.000021 0,004688 0,018£62 0.043755 0.C82227 0.147228 0.386241 

10" 0.00004.' 0.0OM38 0.037403 0.086448 0.162776 0.292070 0.768200 
15° O.OOCCGG 0.013513 0.054811 0,127026 0.239971 0.432134 1.141623 
20° O.O0C077 0.017387 0.07CÖCO 0.164459 0.312138 0,565367 1.602217 
25° O.0OC092 0.020743 0.084599 0.197748 0.377610 0.688264 1.845706 
30° 0.000104 0.023473 Ü.GE6103 0,225942 0.434720 0.769407 2, 167786 
35° 0.0CQII2 0.025510 0,104844 0.248154 0.481836 0.855883 2.484090 
40* 0.0001)8 0.026774 0.110525 0.263583 0.617310 0.675016 2.730134 
45° 0.000190 0.027228 0.112924 0.271538 0.539547 I.033S55 2.961210 
50° 0.000118 0.020855 0.111909 0.271473 O.547C03 1.C6C585 3.152206 

•    55* 0.000113 0.025602 0.107447 0.263028 0.538238 1,076397 3,297296 
60° O.0CO104 0.023G83 0.C9S6I3 0,246077 0,512007 1.056317 3.389359 
65° 0.00C092 0.02C976 0.08S594 0.220781 0.467411 0.S98480 3.418883 
70°. 0,000077 0.017619 0.0746EG 0.187640 0.4C4I43 0.ESS033 3.371563 
75* 0,000060 0,013718 0.058332 0,147536 0.322854 0,75)288 3.222426 
80* 0.00C041 O.009390 O.O4C0I8 0.101748 0,225584 0.549278 2.917759 
85* 0.000021 0,004769 0.020354 0.C5I923 0.116121 0,293?08 2.291946 
90° 0.000000 O.OOCOOO 0,000000 O.CCOOCO O.COCCCO 0,000000 0.000000 

APPENDIX  5 

FUNCTION   »„(*) 

a - 0° a-9° a - 18° B-27* • -36* 

2x 
** - 0,00000' *• - 0.02447 ft* - 0,09549 h» - 0,20611 *•- 0.34549 

0.0 1,0000 0,9970 0.9874 0.9712 0.9471 
0.1 1.0000 0.9970 0.0881 0.9725 0.9497 
0.2 1.0000 0.9975 0.9899 0,9768 0.9572 
0.3 1.0000 •    0.9982 0.9927 0.9831 0,9883 
0.4 I.CWO 0.9991 0,»u6i 0.9911 0,9836 
0.5 1.0000 1.0000 I.OCOO 1.0030 1.0000 
0.6 1.0000 I.COI 1.004 1.009 1.016    ' 
0.7 1.0000 1.002 I.C07 1.017 1,031 
0.8 1.0000 1.033 1.010 1.023 1.043 
0.9 1.0000 1.003 1.012 1.028 1.050 
1.0 1.0003 1.003 1.013 1.029 1,053 

a-45° a-54° a-63° a - 72° ■ -81* 

?X 
*• - 0.50000 ** ~ 0.65151 *' ■• 0,79389 ** - 0.90451 *• - 0.97551 

0.0 0.0136 0.8680 0.8052 0.7157 0.5694 
0.1 0.01!« 0.8744 0.8147 0.7290 0.5696 
0.2 0.93110 0.8931 0.8424 0.7691 0.6494 
0.3 0.94'U 0,9223 0.8853 0.7980 0.7429 
0.4 0.9732 U.0M2 0.93!l7 0.9110 0.8619 
0.8 1,0000 i.flOOO 1.9999 I.M92 0.9958     ' 
0.6 1.027 1.041 1.060 1.088 1.131 
0.7 1,051 1.070 1,115 1.168 1.254 
(1,8 1.070 1.107 1.153 1.231 1.353 
0.9 i.nso 1.126 1.186 I 272 1.417 
1.0 1.086 1,132 1,153 1.286 1.439 
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